A Failure of T} ;-Reduction in the Presence of
2! s-Separation

Stefan Hoffelner*

December 5, 2023

Abstract

We show that one can force over L that ¥}-separation holds, while
II}-reduction fails, thus separating these two principles for the first
time. The construction can be lifted to canonical inner models M,
with n-many Woodin cardinals, yielding that assuming the existence
of M, X}, ;-separation can hold, yet II}, , ;-reduction fails.

1 Introduction

Descriptive Set Theory serves as a fundamental framework for investigating
the structure and properties of sets of real numbers. Two central concepts
within this theory, the Separation Property, introduced in the early 1920’s
and the Reduction Property, introduced by Kuratowski in the mid 1930’s,
have garnered significant attention due to their profound implications for
properties of projective subsets of the real numbers.

Definition 1.1. We say that a projective pointclass T € {XL | n e w} u {11} |
n € w} has the separation property (or just separation) iff every pair Ay and
Ay of disjoint elements of T' has a separating set C, i.e. a set C' such that
Ay < C and Ay < w*\C and such that C € T AT, where I denotes the dual

pointclass of T'.

Definition 1.2. We say that a projective pointclass T € {3L | n € w} u {11} |
n € w} satisfies the T'-reduction property (or just reduction) if every pair
By, B1 of I'-subsets of the reals can be reduced by a pair of I'-sets Ry, R,
which means that Ry € By, R1 < B1, Ron Ry = & and Ry u Ry = By u B.

*Supported by the Deutsche Forschungsgemeinschaft (DFG German Research Founda-
tion) under Germanys Excellence Strategy EXC 2044 390685587, Mathematics Miinster:
Dynamics-Geometry-Structure.

It follows immediately from the definitions that I'-reduction implies I'-
separation. It is very natural to ask whether the reverse direction is also
true.

Since their introduction, many results have been proved which shed light
on how separation and reduction can behave among the projective point-
classes. These results can be obtained using two very different set theoretic
assumptions, which draw very different scenarios of the properties of sepa-
ration and reduction.

The first assumption is V' = L, or rather the existence of a E%—deﬁnable,
good projective well-order of the reals. Recall that a good X.1-definable well-
order is a E%—well—order with the additional property that also the relation
InSeg(z,y) = {(x); | i e w} = {z | z <p, y} is X3, where (z); denotes some
recursive decoding of = into w-many reals, (x); being the i-th real decoded
out of . By results of J. Addison ([1]) the existence of a good 1-wellorder
implies IT! -uniformization for every m > n. As II} -uniformization implies
T} reduction, the assumption of V = L implies that for every n > 1, X1-
reduction and II}-separation is true (the case n = 1 follows from Kondo’s
theorem that IT}-uniformization is true).

The second assumption which settles the behaviour of reduction and
separation on the projective hierarchy is projective determinacy (PD). By
the results of Y. Moschovakis ([13]), under PD, for every n € w, I}, and
33,40 sets have the scale property, which in particular implies that I1}, .,
and X}, sets have the uniformization property and so I3, and 3.,
reduction is true. By the famous theorems of D. Martin and J. Steel (see [11])
on the one hand, and H. Woodin (see [10]) on the other hand, determinacy
assumptions on projective sets and large cardinal assumptions are two sides
of the very same coin.

Note that under V = L and also under PD, I" separation holds because
already the stronger I-reduction (in fact I-uniformization) holds. So these
results do not shed light on the question stated above, whether I'-separation
and I'-reduction are different properties at all. A partial answer to the
question was first given by R. Sami in his PhD thesis from 1976 [14]). In it
he showed (among other interesting results) that after adding a single Cohen
real to L, the resulting universe will satisfy that H%—separation holds, yet 2%_
reduction fails. And additionally Y!-reduction holds again for n > 4. His
results inspired L. Harrington to produce a model in which I—I:l,,—separation
holds but there is a (lightface) X1 set, which can not be reduced by any pair
of Eé—sets, thus Z%—reduetion fails (a write up of Harrington’s proof can be
found in [9]).

The question for the other side of the projective hierarchy, namely for
Yi-separation and IIi-reduction remained open though since then.

Goal of this article is to produce the counterpart to L. Harrington’s result:

Theorem. One can force over L a model of £i-separation over which there

s a pair of H%—sets, which can not be reduced by any pair of II3-sets.

We add that our result uses completely different techniques and methods
than Sami’s and Harrington’s theorems. It follows from a modification of
the arguments from [7], that the proofs can be transferred from L to M,,
the canonical inner model with n-many Woodin cardinal.

Theorem. Assuming that M, exists, there is a model of 2111+3—sepamtion
over which there is a pair of H}L+3—sets, which can not be reduced by any pair
of TIL , 5-sets.

The proof relies on the construction and ideas from [5], where a universe
with the 3i-separation property is produced via forcing over L. However,
we will introduce some simplifications of the original argument, yielding a
cleaner presentation. We will use the coding machinery form [6] which is basi-
cally the same as in [7]. In [6] a universe is forced over L, where IT}-reduction
holds but the stronger Hé—uniformization fails. Our proof presented here will
take a quite different direction though and uses a more direct diagonalization
argument, where we actively work towards two Hé—sets By, B1 which can not
be reduced by a pair of IT3-sets. As we simultaneously have to work towards
a stronger failure of Hé—reduetion, we need to substantially alter the original
definitions and arguments for forcing the X}-separation.

1.1 Notation

The notation we use will be mostly standard, we hope. Diverging from the
conventions we write P = (P, : a <) for a forcing iteration of length ~
with initial segments P,. The a-th factor of the iteration will be denoted
with P(«), this is nonstandard as typically one writes Qa. Note here that
we drop the dot on P(«), even though P(«) is in fact a P,-name of a partial
order. If o/ < a < v, then we write P, to denote the intermediate forcing of
P which happens in the interval [o/, @), i.e. Py is such that P =~ Py % Py,

We write ¥, (X), for X an arbitrary set, to denote the set of formulas
which are X,, and use elements from X as a parameter.

We write P |- ¢ whenever every condition in P forces ¢, and make de-
liberate use of restricting partial orders below conditions, that is, if p € P is
such that p |- ¢, we let P’ := P<, := {g € P : ¢ < p} and use P’ instead
of P. This is supposed to reduce the notational load of some definitions and
arguments. We also write V[P] = ¢ to indicate that for every P-generic
filter G over V, V[G] = ¢, and use V[P] to denote the generic extension of
V by P in case the particular choice of the generic filter does not matter in
the current context.

2 Independent Suslin trees in L, almost disjoint
coding

The coding method of our choice utilizes Suslin trees, which can be generi-
cally destroyed in an independent way of each other.

Definition 2.1. Let T = (T, : o < k) be a sequence of Suslin trees. We
say that the sequence is an independent family of Suslin trees if for every
finite set of pairwise distinct indices e = {ep,e1,...,en} < K the product
Tey X Ty x - xTg, 1s a Suslin tree again.

Note that an independent sequence of Suslin trees T = (T, : o <) has
the property that whenever we decide to generically add branches to some of
its members, then all the other members of T remain Suslin in the resulting
generic extension. Indeed, if A © x and we form [[,_ 4 7; with finite support,
then in the resulting generic extension V[G], for every a ¢ A, V[G] = “Ty
is a Suslin tree”.

One can easily force the existence of independent sequences of Suslin trees
with products of Jech’s or Tennenbaum’s forcing, or with just products of
ordinary Cohen forcing. On the other hand independent sequences of length
w1 already exist in L.

Theorem 2.2. Assume V = L, then there is a ¥1({w1})-definable, indepen-
dent sequence S = (Sq | @ < wy) of Suslin trees.

Proof. We fix a {-sequence (aq, € « | @ < wy). Next we alter the usual
construction of a Suslin tree from < to construct an wi-sequence of Suslin
trees T = (T® | @ < wi). We consider a partition of w; into wj-many
stationary sets {B, | @ < wi} using the canonically defined {-sequence.
Hence we can assume that the partition is X ({w;})-definable over L.

If o is a limit stage, and 3 is such that a € Bg, then we want to construct
the o + 1-th level of T, denoted by Tf 41 under the assumption that Tg is
already defined. First we assume that o« is a not a limit point of Bg, then
we define Tf 41 to be Tg and put infinitely many successors on each of the
top nodes of Tf . Second we assume that a is a limit point of Bz. Then
we define T, 5 +1 as follows. We let e be an element of [w;]=“ and we assume
that for each ¢ € e, we have a tree T? defined already. We consider a, < a.
If a,, happens to be a maximal antichain A in Hyee To, then we seal that
antichain off at level a + 1 for [.. T, that is we chose [] . T, in
such a way that A remains a maximal antichain in all further extensions of
Hwe vl +1- Otherwise we just extend Tg via adding top nodes on countably

many branches through 7. s
We let 79 := Ua<w, T4 and claim that (T° | 8 < w1) is an independent
sequence of Suslin trees.

Indeed, if A is an antichain in some Hwe . I'7, then there is a club a such
that AN« is an antichain in [] o, T.. But then A got sealed off in the next
step of [[¢,).,

The definability of S comes from the fact that the canonical {-sequence
in L is X1 ({w;})-definable. We can use Ly, (which is ¥;({w1}) to correctly
define <} over it and consequentially S becomes definable over Ly, aswell. O

Whenever we force with a Suslin tree (7, <7), i.e. we force with its nodes
to add an uncountable branche, we denote the forcing with T again.

We briefly introduce the almost disjoint coding forcing due to R. Jensen
and R. Solovay. We will identify subsets of w with their characteristic func-
tion and will use the word reals for elements of 2“ and subsets of w respec-
tively. Let D = {d, a < N1} be a family of almost disjoint subsets of w, i.e.
a family such that if r, s € D then r n s is finite. Let X < w be a set of or-
dinals. Then there is a ccc forcing, the almost disjoint coding Ap(X) which
adds a new real x which codes X relative to the family D in the following
way

«a € X if and only if x n d, is finite.

Definition 2.3. The almost disjoint coding Ap(X) relative to an almost
disjoint family D consists of conditions (r, R) € [w]<¥ x D<“ and (s,5) <
(r, R) holds if and only if

1.rcsand Rc S.
2. Ifae X andd, € R thenr ndy = s d,.

We shall briefly discuss the L-definable, Rl-sized almost disjoint family
of reals D we will use throughout this article. The family D is the canonical
almost disjoint family one obtains when recursively adding the <p-least real
xg not yet chosen and replace it with dg © w where that dg is the real which
codes the initial segments of xg using some recursive bijections between w
and w<v.

3 Coding machinery

We continue with the construction of the appropriate notions of forcing which
we want to use in our proof. The goal is to first define a coding forcings
Code(x) for reals z, which will force for z that a certain ¥i-formula ®(z)
becomes true in the resulting generic extension. The coding method is almost
as in [7] and [6].

In a first step we destroy all members of S via generically adding an
wi-branch, that is we first form | | acw; Do With finite support and force with
it over L. Note that this is an N;-sized, ccc forcing over L, so in the generic

extension Nj is preserved and CH remains to be true. We use W to denote
this generic extension of L.

We let W be our ground model now. Let x € W be a real, and let
m,k € w. We simply write (z,m,k) for a real w which codes the triple
(z,m, k) in a recursive way. The forcing Code(x, m,k,1), which codes the
triple (z,m, k) into S is defined as a two step iteration

Code(z,m, k,1) := (C(w))* = A(Y),

where (C(w;))¥ is the usual w;-Cohen forcing (i.e. adding an wj-set with
countable conditions), as defined in L, and A(Y') is the (name of) an almost
disjoint coding forcing, coding a particular set Y (to be defined as we proceed
in the discussion) into as real. Note that as C(wy) is defined in L instead
of W, we can write the two step iteration (C(w;))” % A(Y) as defined over
W as a three step iteration ((] [,e,, Sa) X C(w1)) * A(Y) over L. As C(w1)
is o-closed, S is still Suslin in L[C(w;)], hence the forcing can be rewritten
as (C(w1) % ([[aew, Sa)) * A(Y). Consequentially the coding forcing does
preserve RN,

Next we shall describe the factor A(Y) in detail. We let ¢ © w; be a
C(wy)"-generic filter over L, and let p : [wi]* — w; be some canonically
definable, constructible bijection between these two sets. We use p and g to
define the set h < wy, which eventually shall be the set of indices of w-blocks
of § , where we code up the characteristic function of the real ((z,y, m). Let

h:={plgna): a<w}
and let
A:={wy+2n|vehné¢ (x,mk)}v{wy+2n+1|~vehne (x,m,k).}

X < wy be the <-least set (in some previously fixed well-order of H (w2)" [g]
which codes the following objects:

The <-least set of wj-branches in W through elements of S which
code (z,y,m) at w-blocks which start at values in h, that is we collect
{bsg c S}} B=wy+2n,yeharnewarng (x,y,m)} and {bg cSé :
B=wy+2n+1l,yehArnewanne (z,y,m)}.

Note that, when working in L[X] and if v € h then we can read off
(x,m, k) via looking at the w-block of Sl-trees starting at v and determine
which tree has an w;-branch in L[X]:

(¥*) n € (x,m,k) if and only if SolJ-7+2n+1 has an wi-branch, and n ¢

(z,m, k) if and only if S} has an wi-branch.

“y+2n

Indeed if n ¢ (x,m, k) then we added a branch through SL}WJF%. If on the
other hand S} ., is Suslin in L[X] then we must have added an w;-branch
through Solw +ons+1 a8 we always add an wi-branch through either S},
or S(}J~”/+2n
Sé is Suslin in L[X], as S* is independent.

We note that we can apply an argument resembling David’s trick ! in this
situation. We rewrite the information of X < w; as a subset Y < w; using
the following line of reasoning. It is clear that any transitive, N;-sized model
M of ZF~ which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model (M,€) which contains
X as a set Xy < wi, then for any uncountable 5 such that Lg[Xy/] = ZF~
and XM € Lﬁ[XM]:

y+2n+1
and adding branches through some S}’s will not affect that some

Lg[X] E “The model decoded out of Xy satisfies (x) for every v € h”.

In particular there will be an Ni-sized ordinal 8 as above and we can fix a club
C < w; and a sequence (M, : a € C) of countable elementary submodels of
Lg[X] such that

Voaoe C(My < Lg[Xn] A My nwi =)

Now let the set Y < wy code the pair (C, X)s) such that the odd entries of
Y should code Xj; and if Yy := E(Y) where the latter is the set of even
entries of Y and {c, : @ < w} is the enumeration of C' then

1. E(Y) nw codes a well-ordering of type co.

2. EY)n|w,c0) = .

3. For all 8, E(Y) N [cg,cs + w) codes a well-ordering of type cg1.
4. For all B, E(Y) n [cg + w,cpt1) = .

We obtain

(#+) For any countable transitive model M of ZF~ such that wi’ = (wf)M
and Y nwf € M, M can construct its version of the universe L[Y n
w]], and the latter will see that there is an XM -sized transitive model

N € L[Y n wi'] which models (%) for (z,m, k) and every v e h n M.

Thus we have a local version of the property (x).

In the next step A(Y), working in W{g], for g ¢ C(w;) generic over
W, we use almost disjoint forcing Ap(Y") relative to our previously defined,
almost disjoint family of reals D € L (see the paragraph after Definition 2.5)

!see [2] for the original argument, where the strings in Jensen’s coding machinery are
altered such that certain unwanted universes are destroyed. This destruction is emulated
in our context as seen below.

to code the set Y into one real r. This forcing only depends on the subset
of wy we code, thus Ap(Y") will be independent of the surrounding universe
in which we define it, as long as it has the right w; and contains the set Y.
We finally obtained a real r such that

(###) For any countable, transitive model M of ZF~ such that wj! = (wf)M
and 7 € M, M can construct its version of L[r] which in turn thinks
that there is a transitive ZF~-model N of size 8} such that N believes
(%) for (z,m, k) and every v € h n M.

Note that (#x) is a II3-formula in the parameters r and (x,m, k), as the set
hnM c wM is coded into . We will often suppress the reals 7, (z,m, k)
when referring to (xx) as they will be clear from the context. We say in the
above situation that the real (x,m,k) is written into S, or that (z,m, k)
is coded into S! and r witnesses that (x,m, k) is coded. Likewise a forcing
P(2,m.k),0 is defined for coding the real (x,m, k) into S0,

The projective and local statement (#xx), if true, will determine how
certain inner models of the surrounding universe will look like with respect
to branches through S. That is to say, if we assume that (##x) holds for
a real (x,m,k) and is the truth of it is witnessed by a real r. Then r also
witnesses the truth of (##x) for any transitive ZF~-model M which contains
r (i.e. we can drop the assumption on the countability of M). Indeed if we
assume that there would be an uncountable, transitive M, r € M, which
witnesses that (##x) is false. Then by Lowenheim-Skolem, there would be a
countable N < M, r € N which we can transitively collapse to obtain the
transitive N. But N would witness that (###) is not true for every countable,
transitive model, which is a contradiction.

Consequentially, the real r carries enough information that the universe
L[r] will see that certain trees from S1 have branches in that

new = (z,y,m)= L[r] = “Siw+2n+1 has an wy-branch”.
and
n¢w=(zr,y,m)= L[r] = “S&W+2n has an wy-branch”.

Indeed, the universe L[r]| will see that there is a transitive ZF~-model N
which believes (x) for every v € h < wy, the latter being coded into r. But
by upwards ¥j-absoluteness, and the fact that N can compute St correctly,
if N thinks that some tree in S1 has a branch, then L[r] must think so as
well.

Next we define the set of forcings which we will use in our proof. We
alm to iterate the coding forcings we defined in the last section. As the
first factor is always (C(wy))”, the iteration we aim for is actually a hybrid
of an iteration and a product. We shall use a mixed support, that is we

use countable support on the product-like coordinates which use (C(w))¥,

and finite support on the iteration-like coordinates which use almost disjoint
coding forcing.

Definition 3.1. A mized support iteration P = (Pg : § <) is called allow-
able (or 0-allowable, to anticipate later developments) if o < wy and there
exists a bookkeeping function F : o — H(ws)? such that P is defined induc-
tively using F' as follows:

o If F(0) = (x,i), where x is a real, i € {0,1}, then Py = Code(z,1).
Otherwise Py is the trivial forcing.

o Assume that B > 0 and Pg is defined, Gg < IPg is a generic filter over
W. Moreover assume that F(B) = (&,i), where @ is a Pg-name of a
real, and i is a Pg-name of an element of {0,1} and i%¢ = x. Then
let P(B) = Code(x,i%8) = C(wy1))X « A(Y), for the reshaped Y < wy as
being defined in the last section, and let Pgy1 = Pg x (C(wy))E = A(Y).

Otherwise we force with just (C(wy)).

We use finite support on the iteration-like parts where almost disjoint cod-
ing is used and countable support on the product-like parts where wi-Cohen
forcing, as computed in L is used.

Informally speaking, a (0-) allowable forcing just decides to code the reals

which the bookkeeping F' provides into either SO or S1. Note that the notion
of allowable can be defined in exactly the same way over any W[G], where
G is a P-generic filter over W for an allowable forcing.

We also add that we could have defined allowable in an equivalent way
if we first added, over L, wi-many Cohen subsets of wq, C = (Cq + @ <wi)
with a countably supported product, then, in a second step destroy all the
Suslin trees from S (note S remains independent after adding the wi-many
w1-Cohen subsets) and dub the resulting universe W’. Then we can define
allowable over the new ground model W’ as just a finitely supported iteration
of almost disjoint coding forcings which select at each step injectively one
element C from C and the real given by the bookkepping F' and the i € {0, 1}
and then code up all the branches of the trees from S0 or §1 according to
the real x we code for every w-block with starting value in h < w; derived
from C' as in the last section. That is to say, we could have moved the
product factors in an iteration of allowable forcings right at the beginning
of our iteration, which we are allowed to do anyway, as it is a product. Our
current and equivalent approach is a bit easier in terms of notation for later
parts of the proof, so we defined allowable the way we did.

We obtain the following first properties of allowable forcings:

Lemma 3.2. 1. IfP = (P(B) : B <) e W is allowable then for every
B <6, Ps I |P(B)| = Ny, thus every factor of P is forced to have size
Np.

2. Every allowable forcing over W preserves wi.
3. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.

To see the second item we exploit some symmetry. Indeed, every al-
lowable P = s5.5P(8) = k5<5(((C(w1))” * A(Y3)) € W can be rewritten
as (HB<5(C(w1))L) * (*5<5AD(Y5)) (again with countable support on the
(C(w1))* part and finite support on the almost disjoint coding forcings).

Using that W = L[[],c,, Sa] we can write P as a forcing over L as fol-
1ows: ([Taew, Sa) * [1<5(Clwi)E) * (k3<sAp(Y3)). This is the same as
(TTs<s(C@1)® X TTaew, Sa)) * (kp<sAp(Yp))

The latter representation is easily seen to be of the form P; x P9 =
(*5<5AD(Y5)), where Py is o-closed, P has the ccc, and the third part
is a finite support iteration of ccc forcings, hence wy is preserved.

To see that the third item is true, we note that the definition of almost
disjoint coding forcing only depends on the subset of w; we want to code and
is independent of the surrounding universe V' > W over which it is defined
as long as Y € V. In particular, if (Y, € w1 : a < f) is a sequence of
subsets of w; in some ground model, then the finitely supported iteration
Ko< 5A(Ya) is isomorphic to the finitely supported product [[,_5 A(Ya). So
we immediately see that if

P! = 5.0 P(B) = [[(Cn1)") kpes A(Y))

B<6l
and o
P? = 552 P(B) = | | (C(w1))" s AY))
B<82
then o o
P'xP? =] (Cw) ke AY)) 5252 AYp)
B<dl+62
which is allowable.]

The proof of the second assertion of the last lemma immediately gives us
the following:

Corollary 3.3. Let P = (P(8) : f < 0) € W be an allowable forcing over
W. Then W[P] = CH. Further, if P = (P(a) : @ <w1) € W is an wy-length
iteration such that each initial segment of the iteration is allowable over W,
then W[P] = CH.

Let P = (P(8) : 8 < 0) be an allowable forcing with respect to some
F € W. The set of (names of) reals which are enumerated by F' we call the
set of reals coded by IP. That is, for every 3, if we let £g be the (name) of a

10

real listed by F(3) and if we let G < PP be a generic filter over W and finally
if we let xg =: xg, then we say that {zg : § < a} is the set of reals coded
by P and G (though we will suppress the G). Next we show, that iterations
of O-allowable forcings will not add unwanted witnesses to the ¥i-formula
¥ (w, i) which corresponds to the formula (s:x):

Y(w,i) = IrYM (M is countable and transitive and M = ZF~
and wf = (WM and r,we M — M | ¢(w,1))

where o(w, i) asserts that in M’s version of L[r], there is a transitive, R}/-
sized ZF~-model which witnesses that w is coded into S*.

Lemma 3.4. IfP € W is allowable, P = (P3 : 8 <), G < P is generic
over W and {xg : B < 0} is the set of reals which is coded by P. Let 1(vg) be
the distinguished formula from above. Then in W[G], the set of reals which
satisfy Y (vo) is exactly {xzg : B < 0}, that is, we do not code any unwanted
information accidentally.

Proof. Let G be P generic over W. Let g = (g3 : f < 0) be the set of
the § many w; subsets added by the (C(w;))-part of the factors of P. We
let p : ([wi]®)Y — w; be our fixed, constructible bijection and let hs =
{p(9s N @) : @ < wi}. Note that the family {hg : B < ¢} forms an almost
disjoint family of subsets of wy. Thus there is & < wy such that for arbitrary
distinct 31, B2 < 0, o > hg, N hg, and additionally, assume that a is an
index which does not show up in the set of indices of the trees we code with
P.

We let SL € S'. We claim that there is no real in W[G] such that
WI[G] & L[r] = “S} has an w;j-branch”. We show this by pulling out the
forcing S} out of P. Indeed if we consider W[P] = L[Q°][Q'][Q?][P], and
if S! is as described already, we can rearrange this to W[P] = L[Q°][Q"! x
SH[Q?][P] = W[P'][SL], where Q! is [1520 Sé and P’ is Q¥ + Q' « Q? % P.

Note now that, as S} is w-distributive, 2¥ " W[P] = 2% n W[P'], as S, is
still a Suslin tree in W[P’] by the fact that S° and S are independent, and
no factor of P besides the trees from S° and S! used in P’ destroys Suslin
trees. But this implies that

W[P'] E —3rL[r] &= “S}X has an wy-branch”

as the existence of an wy-branch through S} in the inner model L[r] would
imply the existence of such a branch in W[P’]. Further and as no new reals
appear when passing to W[P] we also get

W[P] = —3rL[r] “Sé has an w;-branch”.

On the other hand any unwanted information, i.e. any (x,m) ¢ {(x3,mg) :
B < ¢} such that W[G] = ¥((x,i,m)) will satisfy that there is a real r such

11

that
ne€ (x,i,m) - L[r] &= “S}J,H%H has an wj-branch”

and
n¢ (x,i,m) — L[r] E “Sian has an wy-branch”.

by the discussion of the last subsection for wi-many ~’s.

But by the argument above, only trees which we used in one of the factors
of P have this property, so there can not be unwanted codes on the Soside.
But the very same argument shows the assertion also for the S0_side. So for
our fixed «, there is no real r which codes an w; branch over L[r]. But any
unwanted information would need not only one but even Nj-many such a’s
chosen as above. This shows that there can not be unwanted information in
WG], as claimed.

O

3.1 «-allowable forcings

The notion of 0-allowable will form the base case of an inductive definition.
Let @ = 0 be an ordinal and assume we defined already the notion of a-
allowable. Then we can inductively define the notion of a + 1-allowable as
follows.

Suppose that v < wy, F' is a bookkeeping function,

F:vy— H(w)’

and
P=<P52ﬂ<7)

is a allowable forcing relative to F' (in fact relative to some bookkeeping F’
determined by F' in a unique way - the difference here is not relevant).
Suppose that

E = Eyu Ey = {(ys, ms, ks) : 6 < o U {(2s,15) : 6 < a,is €{0,1}}

where mg, ks € w and every zg,ys is a P-name of a real and for every two
ordinals 8,7 < «, if y3 and y, are not the empty set, then P I (yg, mg, kg) #
(¥, M, ky). Intuitively, Eq will serve as the set of pairs of boldface E%—sets,
for which we already obtained rules which allow us to separate them; whereas
E; is the set of (names of) reals which we decided to never code along our
a-allowable iteration using the coding forcing Code(x,a,b,i) for two fixed
natural numbers a and b. The latter plays a role in establishing the eventual
failure of I1}-reduction.

Suppose that for every 6 < «, (Pg : 8 <) is d-allowable with respect
toE 6= (Eold)u(Er!0)={(Uymnyky :n<otu{s,:n<d}and
F.

12

We assume first that @, 1 is the empty set and g, 1 is a P-name for a real
and ma41, ka+1 € w such that P I+ Vo < a((9s, ms, ks) # (Yat1, Ma+1, kat1))-
Then we say that (Pg : 8 < 7) is a + l-allowable with respect to E U
{Ua+1,Ma+1,ka+1)} and F if it obeys the following rules.

1. Whenever 8 < v is odd and such that there is a Pg-name & of a real
and a Pg-name for an integer 7 such that

F(IB) = (jjvya-i-l’mo‘-‘rlaka-ﬁ-l?i)

and yq41 is in fact a Pg-name, and for Gz a Pg-generic over W, W|[Gp]
thinks that

1Q(Q is a-allowable with respect to E A
Q-2 e An(Yat1)),

where z = i, and y, = 95, ;. Then continuing to argue in W[G4],
we let

P(8) = Code((z,y, m, k),0).

Note that we confuse here the quadruple (x, y, m, k) with one real which
codes this quadruple.

2. Whenever § < 7 is such that there is a Pg-name = of a real and a
Pg-name ¢ of an integer in {0, 1} such that

F(IB) = (.T7 yoc—i-l; mMa+1, koz—&-h /L)
and for Gz which is Pg-generic over W, W[G3] thinks that

VQ1(Q, is a-allowable with respect to E
— =(Q1 -z € Ap(Yas1)))

but there is a forcing Q2 such that W[Gg]| thinks that

Q2 is a-allowable with respect to E and
Q2 -z € Ap(Ya+1)

Then continuing to argue in W[Gg], we force with
P(8) = Code((z,y,m, k), 1).

Note that we confuse here again the quadruple (z,y,m,k) with one
real w which codes this quadruple.

13

3. If neither 1 nor 2 is true, then either
]P)(/B) = COde((x7 Yy, m, k)7 1)

or

P(8) = Code((z,y, m, k),0)

depending on whether %5 € {0,1} was 0 or 1.

4. If F(B) = (&,9,m, k,4) and for our Pg-generic filter G, W[G] & ¥d <
o+ 1((y%,m, k) ¢ EY), then, working over W[Gp] let

]P)(ﬁ) = Code((:p, y,m, k)a iGﬁ)
depending on whether i“# € {0,1} was 0 or 1.

If, on the other hand 7,41 is the empty set as is mq11, kar1 and Top1
is the P-name of a real, then we define o + 1-allowable with respect to F
and E U {(£q+1,7)}, where i € {0,1} to be a-allowable relative to E' and F’
plus the additional rule, that we will not use factors in our iteration which
contain Code(Zq41,a,b,1).

This ends the definition for the successor step « — « + 1. For limit
ordinals o, we say that a allowable forcing P is « allowable with respect to E
and F if for every n < a, (Pg : f <) is n-allowable with respect to E | n
and some F”.

We add a couple of remarks concerning the last definition.

e By definition, if do < 4; and Py is d;-allowable with respect to F =
{(ys,mp,kp) : B <01} v {(Z,i3) : B < 61 and some Fy, then P; is
also dp-allowable with respect to E | 92 = {(yg,mg,kg) : B < b2} U
{(Zg,i8) : B < d2,i € {0,1}} and an altered bookkeeping function F”.

e The notion of a-allowable can be defined in a uniform way over any
allowable extension W’ of W.

e We will often just say that some iteration P is a-allowable, by which
we mean that there is a set E and a bookkeeping F' such that P is
a-allowable with respect to E and F.

4 Closure under products

Lemma 4.1. Let o be an ordinal, assume that W' is some a-allowable
generic extension of W, and that P! = (]P’é : B < d) and P? = (IF’% :
B <) are two a-allowable forcings over W' with respect to a common set
E =Eyu Ey = {(ys,ms,ks) = 6 < a}u{(Ts,is) : 0 < a} and bookkeeping
functions Fy and Fs respectively. Then there is a bookkeeping function F
such that Py x Py is a-allowable over W' with respect to E and F.

14

Proof. We define F' | 01 to be Fy. For values 01 + 3 > 01 we let F'(61 + () be
such that its value on the first four coordinates equal the first four coordinates
of F5(B), i.e. F(61 + B) = (&,y,m,k,i) for some i € {1,2} where F5(f5) =
(Z,9,m, k,i"). We claim now that we can define the remaining value of F(53),
in such a way that the lemma is true. This is shown by induction on 8 < ds.

First we note that for £ = Ey u Fy we can fully concentrate on the set
Ey in our argument, that is the odd stages 8 of our iteration, as E7 defines a
set of coding forcings we must not use in an a-allowable forcing with respect
to E, and this is clearly closed under products.

Let (P2)g be the iteration of P> up to the odd stage § < do. Assume,
that Py x (IP2)g is in fact an a-allowable forcing relative to £/ and F. Then
we have that F(01 +) | 5= F»(8) | 5 = (&,9,m, k), and we claim that at
that odd stage,

Claim 1. If we should apply case 1,2, 3, or 4 when considering the forcing
Py x Py as an a-allowable forcing relative to E = Egu Ey over the model W,
we must apply the same case when considering Po as an a-allowable forcing
over the model W' relative to E.

Once the claim is shown, the lemma can be proven as follows by induction
on f < d2: we work in the model W’[P1][(P2)g], consider F (61 +) | b =
F>(B) | 5, and ask which of the four cases has to be applied. By the claim,
it will be the same case, as when considering Py over W’ as an a-allowable
forcing relative to F and F». In particular the forcing Py(/3) we define at
stage 8 will be a choice obeying the rules of a-allowable even when working
over the model W'[P{][(P2)g]. This shows that P; x Py is an a-allowable
forcing relative to E and some F over W'.

The proof of the claim is via induction on «. So we assume that a = 1
and both P; and Py are 1-allowable with respect to E = Eyu E7. As the case
E = Ej is clear, we can assume that E = Ey = {y, m, k}. We shall show that
there is a bookkeeping F such that (P2)g : 5 < d2}) is still 1-allowable with
respect to E, even when considered in the universe W’[P;]. We assume first
that at stage 01 + 8 of Py x IPs case 1 in the definition of 1-allowable applies,
when working in the model W/[P;][(IP2)s] relative to E and F. Thus

F(B) 5= (j3¢yam7k)

and (y,m, k) € E and for any G! x G which is Py x (P2)g-generic over W,
if ©%6 = 2 and §y©¢ = y, the universe W/[G1 x G| thinks that

1Q(Q is 0-allowable with respect to E and some F A
QI-ze An(y)).
Thus, if we work over W/[Gg] instead it will think
I(P; x Q)(Py x Q is O-allowable A
P xQl-ze An(y)).

15

Thus, at stage 3, we are in case 1 as well, when considering Py as an 1-
allowable forcing over W' relative to E.

If, at stage 3, case 2 applies, when considering P; x Py as a 1-allowable
forcing with respect to E over W/, then we argue first that case 1 is impossible
when considering Py as a 1-allowable forcing over W’. Indeed, assume for a
contradiction that case 1 must be applied, then, by assumption, Py(5) will
force that x € A, (y). Yet, by Shoenfield absoluteness, P2 (8) would witness
that we are in case 1 at stage 8 when considering P; x Py as 1-allowable with
respect to E over W', which is a contradiction.

Thus we can not be in case 1 and we shall show that we are indeed in
case 2, i.e. there is a 0-allowable forcing @, such that Q |- z € Ax(y), but
such a Q exists, namely Py(/3),

Finally, if at stage 3, case 3 applies when considering Py as a 1-allowable
forcing with respect to E over W’[P;], we claim that we must be in case 3
as well, when considering Py over just W’. If not, then we would be in case
1 or 2 at 8. Assume without loss of generality that we were in case 1, then,
as by assumption Py is 1-allowable over W', Po(8) will force |- z € A, (y).
But this is a contradiction, so we must be in case 3 as well. This finishes the
proof of the claim for a = 1.

We shall argue now that the Claim is true for a + 1-allowable forcings
provided we know that it is true for a-allowable forcings. Again we can
focus on the case when « + 1 allowable forcings are obtained via enlarging
Ey, as enlarging Fq just means to avoid certain coding forcings, which is
trivial to be closed under products. We shall show the claim via induction
on 3. So assume that Py x (P2)g is o 4 1-allowable with respect to £ = E |
a U {(y,mq, ko)} and an F whose domain is 6; + 5. We look at

F(51+5) f5=F2(5) M5 = ('jjuy‘amowka)

We concentrate on the case where [is such that case 2 applies when con-
sidering P; x (P2)g over W’. The rest follows similarly. Our goal is to show
that case 2 must apply when considering the 5-th stage of the forcing using
F» and E over W'[(P2)g] as well.

Assume first for a contradiction, that, when working over W’[(P2)3], at
stage (3, case 1 applies. Then, for any (IP;)s-generic filter Gg over W,

W'[Gg] = 3Q(Q is a-allowable with respect to E | o and some F” and
QlFzeAn(y)

Now, as Py is a-allowable, we know that Po(() is such that Ps(8) I+ = €
A ().

Thus, using the upwards-absoluteness of Eé—formulas, at stage (3 of the
a + l-allowable forcing determined by F' and F, there is an «a-allowable
forcing Q with respect to E | a which forces z € A,,(y), namely Pa(5).

16

But this is a contradiction, as we assumed that when considering P1 x (IP2)g
over W' at stage [3, case 1 does not apply, hence such an a-allowable forcing
should not exist.

So we know that case 1 is not true. We shall show now that case 2 must
apply at stage S when considering Py over the universe W’. By assumption
we know that

W[P1][(P2)5] E=3Q2(Q2 is a-allowable with respect to E | o and
Q2 IF z € Ag(y)

As Py is a + l-allowable with respect to E and F}, it is also a-allowable
with respect to E | o and some altered F7, thus, as a consequence from the
induction hypothesis, we obtain that

W'[(P2)s] = P1 x Qg is a-allowable and Py x Qg Iz € Ag(y).

But then, P; x Q9 witnesses that we are in case 2 as well when at stage (8
of Py over W'. This ends the proof of the claim and so we have shown the
lemma. O

5 Ideas for the proof

This section will be used to briefly explain the set up and the structure of the
proof of the main theorem. There are two goals we aim to accomplish. First,
we want to force 2%—separation. For this, we will use an wy-length iteration.
We list all Xi-formulas in two free variables (¢n(vo,v1) | n € w). We shall
use a bookkeeping device which enumerates simultaneously in an wi-length
list all pairs of natural numbers (m, k) € w? and (names of) reals 3. These
objects m, k, ¢ correspond to pairs of Xi-sets A,,(y) and Ag(y) (the (name
of a) real ¢ serves as a parameter in the k-th and m-th $3-formula ¢, and
k) we want to separate.

At the same time we want to create a universe over which there are two
(lightface) H%-sets By and By which we will design in such a way, that no
(boldface) pair of ITi-sets exists, which reduces By and Bj.

We settle to work towards E%—separation on the odd stages of our it-
eration, whereas we work towards a failure of H%—reduction on the even
stages of the iteration. The iteration itself will consist of the coding forcings
Code(z,y, m, k) applied over L to make certain reals of the form (z,y, m, k)
to satisfy our two X3-formulas ®¢(x,y, m, k) or ®1(x,y, m, k). The final goal
is that for any fixed pair of natural numbers m, k, and any parameter y € w*,
there is a real parameter R, ,, x and a fixed E:l,, formula o such that the sets

Dg,m,k‘(Ry,m,k) = {33 | @o(x,y,m, k) A U(vay,m,k)}

and
D;,m,k(Ry,m,k) = {$ ’ <I>1(:1:,y,m, k) A U(ery,m,k)}

17

will become the separating sets for the pair of ¥3(y)-definable sets Ay, (y)
and Ag(y), ie. An(y) Dg,m,kv Ak(y) < D;,m,k and Dg,m,k(Ry,m,w U
D;,m,kz(Ry,m,k) = w” and Dg,m,k(Ran,k) N D;,m,k(Ry,m,k) = @

At the same time we need to work towards a failure of IT}-reduction which
will be done on the even stages of the iteration. We aim to accomplish the
failure of IT}-reduction via exhibiting two II3-sets (lightface) By and By which
are chosen in such a way that the question of whether some real x is in By or
By can be changed using the coding forcings Code without interfering with
the coding forcings we have to use in order to work for the Xi-separation.
This freedom will be used to define our wi-length iteration of coding forcings
so that eventually By and B; can not be reduced by any pair of (boldface)
ITi-sets, thus yielding a slightly stronger failure than just a failure of IT3-
reduction.

6 The first step of the iteration

We let
@ = (pn(vo,v1) | nEW)

be a fixed recursive list of the Z%—formulas in two free variables. We allow
that vg or vy actually do not appear in some of the ¢,’s, so our list also
contains all E%—formulas in one free variable. We use 1, to denote —y,, i.e.
1y, is the n-th II}-formula in the recursive list of II}-formulas induced by .

We fix two E%—formulas ©a, @y Which provably have non-empty intersec-
tion, e.g. @q(vo) = Jvg(vg = vg) and ¢, = Fvg(vg = vo A vg = 1). As a
consequence, we need not to separate A, and Ap, thus coding forcings of
the form Code(z,a,b,?) for any (name of a) real &, for a,b our fixed natural
numbers and for i € {0, 1} can be used freely in our definition of the iteration
to come.

Next we assume for notational simplicity that —¢g and —pq, i.e. the
negation of the first and the negation of the second formula in our list look
like this:

—po(vo) = ¥o(vo) = “(vo, a,b) is not coded into the go—sequence”
—1(v0) = ¥1(vo) = “(vo, @, b) is not coded into the S'-sequence”
The resulting sets will be defined like this:
By = {z € w” | Po(2)}
By = {zew” [{i(z)}

Note that for any given real z € w“, we can manipulate the truth
value of ¥o(z) and 91 (x) via using the coding forcings Code(zx,a,b,0) and
Code(x, a,b, 1) respectively from true to false (and once false it will remain

18

false because of upwards absoluteness of E%—formulas). This in particular
will not interfere with the yet to be defined procedure of forming the ag-
allowable forcings, we will need in order to force Eé—separation. Thus we
gain some amount of flexibility in how we can make the sets By and B
behave. We will use this to diagonalise against all possible TI}-sets By, by,
in such a way that none of those can reduce By and Bj;. This ensures the
failure of Hé—reduction.

7 Towards Xi-separation

We are finally in the position to define the iteration which will yield a universe
of Zé—separation and a failure of H%—reduction.

The iteration we are about to define inductively will be an allowable
iteration, whose tails are a-allowable and a-increases along the iteration.
We start with fixing a bookkeeping function

F: w1, — H(w1)4

which visits every element cofinally often. The role of F' is to list all the
quadruples of the form (&,y,m,k), where &,y are names of reals in the
forcing we already defined, and m and k are natural numbers which represent
Z:l,)—formulas or H;)—formulas with two free variables, cofinally often. Assume
that we are at stage 5 < w; of our iteration. By induction we will have
constructed already the following list of objects.

e An ordinal ag < 8 and a set E,, = Egﬁ U Eéﬁ which is of the form
{On, My, by = < ag} U {(Ty,iy) : N < ag}, where y,,z, are Ps-
names of a reals, my, k, are natural numbers and i, € {0,1}. As a
consequence, for every bookkeeping function F’, we do have a notion
of n-allowable relative to E and F’ over W[Gjg].

e We assume by induction that for every n < ag, if 8, < 3 is the 7-th
stage in P, where we add a new member to E,,, then W[Gg, | thinks
that the IPg, 5 is n-allowable with respect to Eq, I 7.

o If (g, my, ky) € Eqoy, then we set again 3, to be the n-th stage in Py
such that a new member to E,, is added. In the model W[Gg,], we
can form the set of reals R, which were added so far by the use of a
coding forcing in the iteration up to stage 3, and which witness (s##x)
holds for some (x,y, m, k);

Note that R, is a countable set of reals and can therefore be identified
with a real itself, which we will do. The real R, is an error term and
indicates the set of coding areas we must avoid when expecting correct
codes, at least for the codes which contain y,, m, and k.

19

Assume that 3 is odd, F(8) = (&,y,m, k), assume that &, y are Pg-names for
reals, and m, k € w correspond to the Xi-formulas ¢y, (vo, v1) and ¢y (vo, v1).

Assume that Gg is a Pg-generic filter over W. Let %8 = z and yfﬁ =
Y1, yQG" = y3. We turn to the forcing P(3) we want to define at stage S in
our iteration. Again we distinguish several cases.

(A) Assume that W[Gg]| thinks that there is an ag-allowable forcing Q
relative to E,, 5 and some F’ such that

QI 3z(z € An(y) N Ar(y))-

Then we pick the <-least such forcing, where < is some previously
fixed wellorder. We denote this forcing with Q; and use

P(B) := Q1.

We do not change Rg at such a stage.

(B) Assume that (A) is not true.

(i)

Assume however that there is an ag-allowable forcing Q in W[Gj3]
with respect to Eq,4 such that

QIFze Ayn(y).
Then we set
Q,@ =]P)(/B) = Code(x,y,m,k,()).

In that situation, we enlarge the E-set as follows. We let (g, m, k) =:
(ya,g’ Mag, kozg) and

Eangl = ECMB Y {(yama k)}

Further, if we let 7, be the real which is added by Code((z,y, m, k), 0)
at stage 1 of the iteration which witnesses (#s#x%) of some quadru-
ple (2y, Yn, My, ky). Then we collect all the countably many such
reals we have generically added so far in our iteration up to stage

[and put them into one set R and let

Rangl = R.

Assume that (i) is wrong, but there is an ag-allowable forcing Q
with respect to E,,; in W[Gp] such that

QIFze Ak(y).

20

Then we set

P(3) := Code(x,y, m, k, 1).

In that situation, we enlarge the E-set as follows. We let the new
E value (Jas, Mag, kag) be (y,m, k) and

Eag-i—l = Eag Y {(yvma k)}

Further, if we let 7, be the real which is added by Code(x,y, m, k,i),i €
{0,1} at stage n of the iteration which witnesses (##x) of some
quadruple (zy, Yy, My, ky). Then we collect all the countably
many such reals we have added so far in our iteration up to stage

5 and put them into one set R and let

Ra5+1 = R

(iii) If neither (i) nor (ii) is true, then there is no ag-allowable forcing
Q with respect to E,, which forces x € Ay, (y) or z € Ag(y), and
we set

P(3) := Code((z,y,m, k), 1).

Further, if we let 7, be the real which is added by Code((z,y,m, k), 1)
at stage n of the iteration which witnesses (x##) of some quadru-
ple (25, Yy, My, ky). Then we collect all the countably many such
reals we have added so far in our iteration up to stage 8 and put
them into one set R and let

Ra,3+1 = R.

Otherwise we force with the trivial forcing.

8 Towards a failure of IT}-reduction

Assume that 8 < wi is an even stage of our iteration. Our induction hypoth-
esis includes that we have created already the iteration Pg up to stage 3, and
that we defined the notion of ag-allowable forcings for an ordinal ag < w;.
Assume that F'(8) = (m,k,y), where m,k € w and 3 is the Pg-name of a
real number. We consider the following cases:

8.1 Casel

We first assume that, working over L[Gpg], there is a further ag-allowable
forcing P € L|Gg] such that P adds two reals zp and 1 and such that for a
P-generic filter G over L[Gg], L[Gg][G] satisfies:

1. zp € B,,\By and (zg,y, a,b) is neither coded into SO nor S,

21

2. 21 € By\By, and (z1,y, a,b) is neither coded into S° nor S

In that situation we first use the <;-least Pg-name of such a forcing P to
add the reals xg and xy. After forcing with P we code xy and z; both into
S via forcing with Code(zg, a,b,1) x Code(z1, a,b,1). The forcing

P« (Code(xg, a, b, 1) x Code(z1,a,b,1)) =:P(3) = Qﬂ

is the forcing we use at stage § in the situation of case 1. We also change
the notion of ag-allowable to ag + 1-allowable which is defined to be ag-
allowable together with the additional demand to neither use the forcing
Code(wo, a, b, 0) nor Code(x1,a,b,0). In other words we let Fy,41 := Eq, U
{(z0,0), (z1,0)}. Note that this choice ensures that zp and x; will both be
elements of By in all outer ag + 1-allowable extensions.

Note that the choice of P(3) = Qg and ag+1-allowability already ensures
that By, (y), Bx(y) can not reduce By and Bj in all possible ag + 1-generic
extensions of L[Gg41].

Lemma 8.1. The sets By, (y) and By(y) can not reduce By and By in all
outer models of L[Ggy1] which are obtained by a further ag + 1-allowable
forcing.

Proof. Indeed, we shall consider three subcases to see this. We work in
M o L[Gg41] where M is an outer model obtained by a further ag + 1-
allowable forcing.

Case la: First we assume that ¢ € By,\By and x; € B\ B, still holds in M. In
this situation neither B,, © B{ nor B c B; can hold as witnessed by
xo and x1. In particular, B,,(y) and By (y) can not reduce By and Bj.
Note that this will remain true in all further outer models obtained
by an additional ag + 1-allowable forcing as long as x¢ € By, \Bj, and
x1 € Bp\Bp,. If 2; will drop out of B,, or By, in some ag + 1-allowable
extension, then case 1b and case 1c will apply.

Case 1b: We assume that z¢p € B, \By but 1 ¢ B, u By holds in M. In
this situation we can not have By u By = B, U Bj, as x1 € By and
1 ¢ By, U By. Note that z1 € By will remain true in outer ag + 1-
allowable models, as we settled to never use Code(z1,y,a,b,0) and
z1 ¢ By, U By by the upwards absoluteness of the Si-formulas —),,
and —. As a consequence, By, (y) and B (y) can not reduce By and
By in all outer ag + 1-allowable models M.

Case lc: In the dual case we assume that x1 € B,,(y)\Bk(y) but z¢ ¢ B, (y) U
By(y) holds in M to derive, as above, that By u By # B,(y) U Bi(y).

Case 1d: If o and z; are both not in B,,(y) and By(y), then again B, (y) U
By (y) # Bo v Bj.

22

O

To summarize: In the described case 1, we defined an ag-allowable forc-
ing Qg and the notion of ag + l-allowable forcings, such that ag-allowable
forcings are also ag + 1-allowable (but not vice versa). Additionally in all
further ag + 1-allowable generic extensions of L[G41], the sets By, (y) and
By(y) can not reduce By and Bj.

8.2 Case 2

In the second case, we assume that case 1 does not apply. As a consequence,
whenever we work over L[Gg] and apply a further ag-allowable forcing P
which adds two reals zp # 1 and does neither have Code(zg,a,b,i) nor
Code(z1,a,b,1) as a factor for i € {0,1}, then xg, z1 will not satisfy that

20 € B (y)\Bk(y) and 21 € By(y)\Bm (y).-
Again, we shall split into subcases:

Case 2a: There is an ag-allowable P and a G < P such that in L[Gg][G] there
are xg # x1 such that zg,z; € B;,\Bg. In this situation, we force
over L[Gg][G] with Code(zg, a,b, 1) x Code(z1,a,b,0). Let Hyx Hy
Code(zg, a,b,1) x Code(z1,a,b,0) be a L[Gg][G]-generic filter; and
define Gy1 1= Gg = G = (Hg x Hy). We also define ag + 1-allowable
as being ag-allowable with the additional rule that Code(zo,a,b,0)
and Code(x1,a,b,1) will not be used anymore as factors. (Note that
as a consequence of this zg € By and x1 € By will remain true in all
ag + l-allowable generic extensions of L[Gg41]). That is, we define
Eog+1:= Eay U {(20,0), (z1,1)}. Then we argue as follows:

Lemma 8.2. Let M be an outer model of L[Ggy1] obtained via an
ag + 1-allowable forcing. Then B, (y) and By(y) can not reduce By
and B1 over M.

Proof. We split into several cases. Assume first that in M > L[Gpg41],
x0,x1 € By (y) still holds true. Then, as z¢ € By\B; and x; € B1\By,
the set By, (y) can neither reduce By nor B;. Indeed x(witnesses that
By, (y) is not a subset of By and x; witnesses that By, (y) is not a subset
of By. If, in a further ag + 1-allowable extension of M > L[Gg41],
xo ¢ Bn(y) or z1 ¢ By, (y) then this will be dealt with in the next
subcases.

If in M > L[Gg41), xo ¢ Bm(y), yet 21 € By, (y) then zg ¢ By, (y) u
By (y) and x¢ € By in all ag + 1-allowable generic extensions of M. So
B (y) v Br(y) # By v By and B,,(y), Bx(y) can not reduce By, Bj.
The same argument works if x1 ¢ By, (y) and z¢ € By, (y).

If in M, xo,21 ¢ Bp(y) anymore, then again B, (y), Br(y) can not
reduce By, Bj.

23

Case 2b:

Case 2c:

O

The dual situation in which we can force xy # x1 such that xy,x1 €
By (y)\Bm(y) is dealt with in the analogous way.

If neither 2a nor 2b are true, then one can not force two distinct
reals xg, z1 into Bp,(y)\Bk(y) with ag-allowable forcings which do
not contain Code(xg, a, b, i) or Code(x1,a,b,i) for i € {0,1}. And the
same holds true for By (y)\B,(y). But it is straightforward to use an
ag-allowable forcing P over L[{Gg| which will add R;-many new reals
(2 | i < w1) and neither Code(z;, a,b,0) nor Code(z;, a, b, 1) is a factor
of P. We force with such a P, let G < P be generic over L[G] and
let L[Ggy1] = L[G3][G]. We set ag + 1-allowable forcing to be ag-
allowable with the additional constraint that neither Code(z;,a,b,0)
nor Code(z;,a,b,1) must be used.

Lemma 8.3. If M is an outer model of L|Gg41], obtained with a
further ag+1-allowable forcing. Then By, (y) and By(y) can not reduce
Bo, B,

Proof. For every ag+1-allowable extension M of L[Gg41], Vi < wi(z; €
By u By) must hold in M, yet for any pair z; # zj, M | z,z; €
B (y) n Bi(y) or M |= 2, 2; ¢ (Bm(y) v Bi(y)). In both cases, z;, z;
witness that B,,(y) and By (y) can not reduce By, By over M.

O

To summarize: in both cases we defined an extension L[Ggy1] of
L[Gg], and the notion of ag + l-allowable forcings. Additionally we
found reals which witness that B,,(y) and B(y) can not reduce By
and By in all further outer models M of L[Gg41] which are obtained
with a further ag + 1-allowable forcing.

At limit stages 3, we use the mixed support to define the limit partial
order Pg and set F,, = Un <p Ea,. This ends the definition of P, .

9 Discussion of the resulting universe

We let G, be a PP, -generic filter over W. As W[G,, | is a proper extension
of W, wiq is preserved. Moreover CH remains true.

A second observation is that for every stage 3 of our iteration and every
n > B3, the intermediate forcing P[g), defined as the factor forcing of Pg and
P, is always an ag-allowable forcing relative to Eq, and some bookkeeping.
This is clear as by the definition of the iteration, we force at every stage

24

p with a ag-allowable forcing relative to F,, and ag-allowable becomes a
stronger notion as we increase ag.

A third observation is, that By and B; can not be reduced by any pair of
boldface I13-sets By, (y), Bx(y). This follows immediately from the definition
and the discussion of the iteration on even stages. Indeed if B,,(y) and
By (y) are arbitrary H%—sets, then, if ¢ is some nice name of y, the triple
(m, k,y) will be guessed by the bookkeeping function cofinally often on the
even stages. But on the first stage S where it is guessed, we ensured that
By and Bj can not be reduced by By, (y) and Bi(y). And this remains
true for all further ag + 1-allowable extensions of L[Gg1]. As L[G,,,] is an
ag + l-allowable extension of L[Gg41], the assertion follows.

We still need to show that in L[G,,] the X3-separation property is true.
For a pair of disjoint ¥1(y)-sets, A,,(y) and Ag(y), we consider the least
stage 3 such that there is a Pg-name 2 such that 308 = z and (z,y, m, k) are
considered by F' at stage 3. We consider the real R,, which codes up all the
reals which witness an instance of (¥#%) for some quadruple (2,3, m’, k').
This real Ry, contains the information for all coding areas and quadruples
(«/,y',m’, k') we have coded up so far into S in our iteration. As mentioned
already, the role of R, is that of an error term. We might have added false
patterns in our iteration so far, but these false patterns will appear in a
coded form in R,,. Our definitions will ensure that for the pair A, (y) and
Ay (y), modulo Ry, the set of reals = for which the quadruple (z,y,m, k) is

coded into ,S_"O, and the set of reals z, for which the quadruple (x,y, m, k) is
coded into St will separate A,,(y) and A (y):

x € D27m7k(Ra6) < 3r(L[r, Ra,] E (z,y,m, k) can be read off from a code

written on an wi-many w-blocks of elements of
SO and the coding area of (x,y,m, k)

is almost disjoint from each coding area in R,).

ze D)} k(Ray) = Ir(L[r, Rag] E (2,9, m, k) can be read off from a code

written on an wi-many w-blocks of elements of

S! and the coding area of (z,y, m, k)

is almost disjoint from each coding area in R,,).

It follows from the definition of the iteration that for any real parameter
y and any m,k € w, D27m7k(Ra6) v D;’m’k(Raﬁ) = w“. Indeed, as our
bookkeeping function visits each name of a real in our iteration Nj-many
times, it will list each real z € W|[G,,, | unboundedly often below w;. Thus

(z,y,m, k) will be coded into SO0 or ST at stages 8/ > S, which gives that

25

Dy e (Rag) U Dy

are indeed separating.

(Ray;) = w” The next lemma establishes that the sets

Lemma 9.1. In W[Gy,], let y be a real and let m,k € w be such that
A (y) N Ak(y) = &. Then there is an real R such that the sets D27m7k(R)

1
and Dy,m,k

Proof. Let (be the least stage such that there is a real = such that F(5) =
(z,y,m, k) with xg =, yg =y. Let R be Ry, for Ry, being defined as
above. Then, as A, (y) and Ag(y) are disjoint in W[G,, |, by the rules of
the iteration, case B must apply at .

Assume now for a contradiction, that DS}m,k(R) and D;,m,k (R) do have
non-empty intersection in W[G,,]. Let z € D;m’k(R) N D;’m’k(R) and let
~ > [3 be the first stage of the iteration which sees that z is in the intersection.
Then, by the rules of the iteration and without loss of generality, we must
have used case B(i) at the first stage 6 = 8 of the iteration where (z,y,m, k)
is listed by the bookkeeping F', and case B(ii) at stage . But this would
imply, that at stage §, there is an ag-allowable forcing Qs with respect to
E.;, which forces z € A,,(y), yet at stage v > §, there is an ay-allowable
forcing which forces z € Ai(y). As v > 6, the a,-allowable forcing Q.
which witnesses that we are in case B (ii) at stage v in our iteration, is also
as-allowable. But this means that, over W[Gjs], the intermediate forcing
Ps,, which is also as-allowable can be extended to the as-allowable forcing
which first uses P5 , and then Q, (denotes by Ps, — Q,), as it is, very strictly
speaking not an iteration but a hybrid of an iteration and a product)) yielding
an ag-allowable forcing which forces z € Ag(y).

On the other hand, in W[Gs] we do have Qs which forces z € A, (y),
as we assumed that at stage J we are in case B (i). Now the product Qs x
(Ps~ ~ Q) is as-allowable, and by upwards absoluteness of Yi-formulas we
get that

(R) partition the reals.

Qs x (]P)(S,"/ a Qﬂ/) -2z € An(y) N Ar(y).

But this would mean that at stage §, we are in case A in the definition of
our iteration, which is a contradiction.
O

Lemma 9.2. In W|[G,,], for every pair m,k and every parameter y € w®
such that Ap,(y) N Ag(y) = & there is a real R such that

Proof. The proof is by contradiction. Assume that m, k and y are such that
for every real R there is z such that z € A,,(y) n D! (R) or z € Ar(y) N

y,m,k
D;m’k(R). We consider the smallest ordinal 8 < w; such that F(3) lists a

quadruple of the form (x,y,m, k) for which W[G,]| E z € Ap(y) N D;’m’k

26

and let R = R,;. As Ay (y) and Ag(y) are disjoint we know that at stage

8 we were in case B. As z is coded into S1 after stage 8 and by the last
Lemma, Case B(i) is impossible at . Hence, without loss of generality
we may assume that case B(ii) applies at 3. As a consequence, there is a
forcing Q2 € W([Gp] which is ag-allowable with respect to E,, which forces
Q2 I+ x € Ag(y). Note that in that case we collect all the reals which witness
(#%x) for some quadruple to form the set Rq,.

As z e Ap(y) n D;7m7k(R), we let 5/ > (be the first stage such that
W([Gg] E = € An(y). By Lemma 4.1, W[Gp] thinks that Qo x Pgg is
ag-allowable with respect to Eq,, yet Q2 x Pggr |-z € Ay (y) 0 Ag(y). Thus,
at stage B, we must have been in case A. This is a contradiction.]

The next lemma will finish the proof of our theorem:

Lemma 9.3. In W[G.,], if y € w¥ is an arbitrary parameter, R a real and
m, k natural numbers, then the sets Dg’m’k(R) and D;m’k(R) are $3(R)-
definable.

Proof. The proof is a standard calculation using the obvious modification of
(##x) employing R as the set which codes the coding areas a real must avoid

tobein DY (R)or D! (R). O

y,m,k y,m,k

10 Lifting to M,

The ideas presented can be used to construct a universe in which 3}, 5-
separation can be separated from H}L yg-reduction. Its proof is a direct ap-
plication of the ideas from |7] which can be used to translate the argument
for the third level of the projective hierarchy to M,. As there are no new
ideas needed, and the translation works in a very similar manner to |7], we
will not go into any details.

11 Open questions

We end with several questions which are related to this article.

Question 1. Does there exist a universe in which E%—sepamtion holds, but
11! -reduction fails for any n > 37

Note for this question that in our construction of the failure of IIi-
reduction, we used Shoenfield absoluteness, or rather the upwards absolute-
ness of Yi-formulas, several times. Thus a failure of II}-reduction would
need new ideas and arguments.

Question 2. Can one force a universe of }-separation in which I1}-reduction
fails over just L?

27

By a classical result of Novikov, for any projective pointclass I', it is

impossible to have I" and I'-reduction simultaneously. The case for separation
is still unknown.

Question 3. Can one force a universe where Eé— and Hé—sepamtz’on hold

simultaneously?
References

[1] J. Addison Some consequences of the axiom of constructibility, Funda-
menta Mathematica, vol. 46 (1959), pp. 337-357.

[2] R. David A wvery absolute I1i-real singleton. Annals of Mathematical
Logic 23, pp. 101-120, 1982.

[3] S. D. Friedman and D. Schrittesser Projective Measure without Projec-
tive Baire. Memoirs of the American Mathematical Society vol. 267,
1298. 2020.

[4] S. Hoffelner NS, Ai-definable and saturated. Journal of Symbolic Logic
86 (1), pp. 25 - 59, 2021.

[5] S. Hoffelner Forcing the ¥3-separation property. Journal of Mathemati-
cal Logic 22, No. 2, 2022.

. Hoflelner Forcing the -reduction property and a fatlure o -

6] S. Hoffelner Forcing the I1i-reducti d il I}
uniformization property, Annals of Pure and Applied Logic, Volume
174, Issue 8, 2023.

[7] S. Hoffelner Forcing the II.-uniformization property, submitted. Pre-
rprint available Arxiv.

[8] R. Jensen and R. Solovay Some Applications of Almost Disjoint Sets.
Studies in Logic and the Foundations of Mathematics Volume 59, pp.
84-104, 1970.

[9] V. Kanovei and V. Lyubetsky On Harrington’s model in which Separa-
tion holds but Reduction fails at the 3rd projective level, and on some
related models of Sami, Arxiv.

[10] S. Miiller, R. D. Schindler and W. H. Woodin Mice with finitely
many Woodin cardinals from optimal determinacy hypotheses, Journal
of Mathematical Logic, vol. 20, 2020.

11] D. Martin and J. Steel A Proof of Projective Determinacy. Journal of

[] y

the American Mathematical Society (2), pp.71-125, 1989.

28

[12] Y. Moschovakis Descriptive Set Theory. Mathematical Surveys and
Monographs 155, AMS.

[13] Y. Moschovakis Uniformization in a playful Universe. Bulletin of the
American Mathematical Society 77, no. 5, 731-736, 1971.

[14] R. Sami Questions in descriptive set theory and the determinacy of in-
finite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.

29

