A Failure of Π_{n+3}^{1}-Reduction in the Presence of Σ_{n+3}^{1}-Separation

Stefan Hoffelner*

December 5, 2023

Abstract

We show that one can force over L that Σ_{3}^{1}-separation holds, while Π_{3}^{1}-reduction fails, thus separating these two principles for the first time. The construction can be lifted to canonical inner models M_{n} with n-many Woodin cardinals, yielding that assuming the existence of M_{n}, Σ_{n+3}^{1}-separation can hold, yet Π_{n+3}^{1}-reduction fails.

1 Introduction

Descriptive Set Theory serves as a fundamental framework for investigating the structure and properties of sets of real numbers. Two central concepts within this theory, the Separation Property, introduced in the early 1920's and the Reduction Property, introduced by Kuratowski in the mid 1930's, have garnered significant attention due to their profound implications for properties of projective subsets of the real numbers.

Definition 1.1. We say that a projective pointclass $\Gamma \in\left\{\Sigma_{n}^{1} \mid n \in \omega\right\} \cup\left\{\Pi_{n}^{1} \mid\right.$ $n \in \omega\}$ has the separation property (or just separation) iff every pair A_{0} and A_{1} of disjoint elements of Γ has a separating set C, i.e. a set C such that $A_{0} \subset C$ and $A_{1} \subset \omega^{\omega} \backslash C$ and such that $C \in \Gamma \cap \check{\Gamma}$, where $\check{\Gamma}$ denotes the dual pointclass of Γ.

Definition 1.2. We say that a projective pointclass $\Gamma \in\left\{\Sigma_{n}^{1} \mid n \in \omega\right\} \cup\left\{\Pi_{n}^{1} \mid\right.$ $n \in \omega\}$ satisfies the Γ-reduction property (or just reduction) if every pair B_{0}, B_{1} of Γ-subsets of the reals can be reduced by a pair of Γ-sets R_{0}, R_{1}, which means that $R_{0} \subset B_{0}, R_{1} \subset B_{1}, R_{0} \cap R_{1}=\varnothing$ and $R_{0} \cup R_{1}=B_{0} \cup B_{1}$.

[^0]It follows immediately from the definitions that Γ-reduction implies $\check{\Gamma}$ separation. It is very natural to ask whether the reverse direction is also true.

Since their introduction, many results have been proved which shed light on how separation and reduction can behave among the projective pointclasses. These results can be obtained using two very different set theoretic assumptions, which draw very different scenarios of the properties of separation and reduction.

The first assumption is $V=L$, or rather the existence of a Σ_{2}^{1}-definable, good projective well-order of the reals. Recall that a good Σ_{2}^{1}-definable wellorder is a Σ_{2}^{1}-well-order with the additional property that also the relation $\operatorname{InSeg}(x, y): \Leftrightarrow\left\{(x)_{i} \mid i \in \omega\right\}=\left\{z \mid z<_{L} y\right\}$ is Σ_{2}^{1}, where $(x)_{i}$ denotes some recursive decoding of x into ω-many reals, $(x)_{i}$ being the i-th real decoded out of r. By results of J. Addison ([1]) the existence of a good Σ_{n}^{1}-wellorder implies Π_{m}^{1}-uniformization for every $m \geqslant n$. As Π_{m}^{1}-uniformization implies Π_{m}^{1} reduction, the assumption of $V=L$ implies that for every $n \geqslant 1, \Sigma_{n^{-}}^{1}$ reduction and Π_{n}^{1}-separation is true (the case $n=1$ follows from Kondo's theorem that Π_{1}^{1}-uniformization is true).

The second assumption which settles the behaviour of reduction and separation on the projective hierarchy is projective determinacy (PD). By the results of Y. Moschovakis ([13]), under PD, for every $n \in \omega, \Pi_{2 n+1}^{1}$ and $\Sigma_{2 n+2}^{1}$ sets have the scale property, which in particular implies that $\Pi_{2 n+1}^{1}$ and $\Sigma_{2 n+2}^{1}$ sets have the uniformization property and so $\Pi_{2 n+1}^{1}$ and $\Sigma_{2 n+2}^{1}$ reduction is true. By the famous theorems of D. Martin and J. Steel (see [11]) on the one hand, and H. Woodin (see [10]) on the other hand, determinacy assumptions on projective sets and large cardinal assumptions are two sides of the very same coin.

Note that under $V=L$ and also under PD, Γ separation holds because already the stronger $\check{\Gamma}$-reduction (in fact $\check{\Gamma}$-uniformization) holds. So these results do not shed light on the question stated above, whether Γ-separation and $\check{\Gamma}$-reduction are different properties at all. A partial answer to the question was first given by R. Sami in his PhD thesis from 1976 [14]). In it he showed (among other interesting results) that after adding a single Cohen real to L, the resulting universe will satisfy that Π_{3}^{1}-separation holds, yet Σ_{3}^{1} reduction fails. And additionally Σ_{n}^{1}-reduction holds again for $n \geqslant 4$. His results inspired L. Harrington to produce a model in which $\boldsymbol{\Pi}_{\mathbf{3}}^{\mathbf{1}}$-separation holds but there is a (lightface) Σ_{3}^{1} set, which can not be reduced by any pair of $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{1}}$-sets, thus Σ_{3}^{1}-reduction fails (a write up of Harrington's proof can be found in [9]).

The question for the other side of the projective hierarchy, namely for Σ_{3}^{1}-separation and Π_{3}^{1}-reduction remained open though since then.

Goal of this article is to produce the counterpart to L. Harrington's result:
Theorem. One can force over L a model of $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{1}}$-separation over which there
is a pair of Π_{3}^{1}-sets, which can not be reduced by any pair of $\boldsymbol{\Pi}_{3}^{1}$-sets.
We add that our result uses completely different techniques and methods than Sami's and Harrington's theorems. It follows from a modification of the arguments from [7], that the proofs can be transferred from L to M_{n}, the canonical inner model with n-many Woodin cardinal.

Theorem. Assuming that M_{n} exists, there is a model of $\boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{3}^{1}}^{\mathbf{- s e p a r a t i o n}}$ over which there is a pair of Π_{n+3}^{1}-sets, which can not be reduced by any pair of $\boldsymbol{\Pi}_{\mathbf{n}+\mathbf{3}}^{1}$-sets.

The proof relies on the construction and ideas from [5], where a universe with the Σ_{3}^{1}-separation property is produced via forcing over L. However, we will introduce some simplifications of the original argument, yielding a cleaner presentation. We will use the coding machinery form [6] which is basically the same as in [7]. In [6] a universe is forced over L, where Π_{3}^{1}-reduction holds but the stronger Π_{3}^{1}-uniformization fails. Our proof presented here will take a quite different direction though and uses a more direct diagonalization argument, where we actively work towards two Π_{3}^{1}-sets B_{0}, B_{1} which can not be reduced by a pair of $\boldsymbol{\Pi}_{3}^{1}$-sets. As we simultaneously have to work towards a stronger failure of Π_{3}^{1}-reduction, we need to substantially alter the original definitions and arguments for forcing the Σ_{3}^{1}-separation.

1.1 Notation

The notation we use will be mostly standard, we hope. Diverging from the conventions we write $\mathbb{P}=\left(\mathbb{P}_{\alpha}: \alpha<\gamma\right)$ for a forcing iteration of length γ with initial segments \mathbb{P}_{α}. The α-th factor of the iteration will be denoted with $\mathbb{P}(\alpha)$, this is nonstandard as typically one writes $\dot{\mathbb{Q}}_{\alpha}$. Note here that we drop the dot on $\mathbb{P}(\alpha)$, even though $\mathbb{P}(\alpha)$ is in fact a \mathbb{P}_{α}-name of a partial order. If $\alpha^{\prime}<\alpha<\gamma$, then we write $\mathbb{P}_{\alpha^{\prime} \alpha}$ to denote the intermediate forcing of \mathbb{P} which happens in the interval $\left[\alpha^{\prime}, \alpha\right)$, i.e. $\mathbb{P}_{\alpha^{\prime} \alpha}$ is such that $\mathbb{P} \cong \mathbb{P}_{\alpha^{\prime}} * \mathbb{P}_{\alpha^{\prime} \alpha}$.

We write $\Sigma_{n}(X)$, for X an arbitrary set, to denote the set of formulas which are Σ_{n} and use elements from X as a parameter.

We write $\mathbb{P} \Vdash \varphi$ whenever every condition in \mathbb{P} forces φ, and make deliberate use of restricting partial orders below conditions, that is, if $p \in \mathbb{P}$ is such that $p \Vdash \varphi$, we let $\mathbb{P}^{\prime}:=\mathbb{P}_{\leqslant p}:=\{q \in \mathbb{P}: q \leqslant p\}$ and use \mathbb{P}^{\prime} instead of \mathbb{P}. This is supposed to reduce the notational load of some definitions and arguments. We also write $V[\mathbb{P}] \models \varphi$ to indicate that for every \mathbb{P}-generic filter G over $V, V[G] \models \varphi$, and use $V[\mathbb{P}]$ to denote the generic extension of V by \mathbb{P} in case the particular choice of the generic filter does not matter in the current context.

2 Independent Suslin trees in L, almost disjoint coding

The coding method of our choice utilizes Suslin trees, which can be generically destroyed in an independent way of each other.

Definition 2.1. Let $\vec{T}=\left(T_{\alpha}: \alpha<\kappa\right)$ be a sequence of Suslin trees. We say that the sequence is an independent family of Suslin trees if for every finite set of pairwise distinct indices $e=\left\{e_{0}, e_{1}, \ldots, e_{n}\right\} \subset \kappa$ the product $T_{e_{0}} \times T_{e_{1}} \times \cdots \times T_{e_{n}}$ is a Suslin tree again.

Note that an independent sequence of Suslin trees $\vec{T}=\left(T_{\alpha}: \alpha<\kappa\right)$ has the property that whenever we decide to generically add branches to some of its members, then all the other members of \vec{T} remain Suslin in the resulting generic extension. Indeed, if $A \subset \kappa$ and we form $\prod_{i \in A} T_{i}$ with finite support, then in the resulting generic extension $V[G]$, for every $\alpha \notin A, V[G] \models$ " T_{α} is a Suslin tree".

One can easily force the existence of independent sequences of Suslin trees with products of Jech's or Tennenbaum's forcing, or with just products of ordinary Cohen forcing. On the other hand independent sequences of length ω_{1} already exist in L.

Theorem 2.2. Assume $V=L$, then there is a $\Sigma_{1}\left(\left\{\omega_{1}\right\}\right)$-definable, independent sequence $\vec{S}=\left(S_{\alpha} \mid \alpha<\omega_{1}\right)$ of Suslin trees.

Proof. We fix a \diamond-sequence ($a_{\alpha} \subset \alpha \mid \alpha<\omega_{1}$). Next we alter the usual construction of a Suslin tree from \diamond to construct an ω_{1}-sequence of Suslin trees $\vec{T}=\left(T^{\alpha} \mid \alpha<\omega_{1}\right)$. We consider a partition of ω_{1} into ω_{1}-many stationary sets $\left\{B_{\alpha} \mid \alpha<\omega_{1}\right\}$ using the canonically defined \diamond-sequence. Hence we can assume that the partition is $\Sigma_{1}\left(\left\{\omega_{1}\right\}\right)$-definable over L.

If α is a limit stage, and β is such that $\alpha \in B_{\beta}$, then we want to construct the $\alpha+1$-th level of T^{β}, denoted by $T_{\alpha+1}^{\beta}$ under the assumption that T_{α}^{β} is already defined. First we assume that α is a not a limit point of B_{β}, then we define $T_{\alpha+1}^{\beta}$ to be T_{α}^{β} and put infinitely many successors on each of the top nodes of T_{α}^{β}. Second we assume that α is a limit point of B_{β}. Then we define $T_{\alpha+1}^{\beta}$ as follows. We let e be an element of $\left[\omega_{1}\right]^{<\omega}$ and we assume that for each $\delta \in e$, we have a tree T_{α}^{δ} defined already. We consider $a_{\alpha} \subset \alpha$. If a_{α} happens to be a maximal antichain A in $\prod_{\gamma \in e} T_{\alpha}^{\gamma}$, then we seal that antichain off at level $\alpha+1$ for $\prod_{\gamma \in e} T_{\alpha+1}^{\gamma}$, that is we chose $\prod_{\gamma \in e} T_{\alpha+1}^{\gamma}$ in such a way that A remains a maximal antichain in all further extensions of $\prod_{\gamma \in e} T_{\alpha+1}^{\gamma}$. Otherwise we just extend T_{α}^{β} via adding top nodes on countably many branches through T_{α}^{β}.

We let $T^{\beta}:=\bigcup_{\alpha<\omega_{1}} T_{\alpha}^{\beta}$ and claim that $\left(T^{\beta} \mid \beta<\omega_{1}\right)$ is an independent sequence of Suslin trees.

Indeed, if A is an antichain in some $\prod_{\gamma \in e} T^{\gamma}$, then there is a club α such that $A \cap \alpha$ is an antichain in $\prod_{\gamma \in e} T_{\alpha}^{\gamma}$. But then A got sealed off in the next step of $\prod_{\gamma \in e} T_{\alpha+1}^{\gamma}$

The definability of \vec{S} comes from the fact that the canonical \diamond-sequence in L is $\Sigma_{1}\left(\left\{\omega_{1}\right\}\right)$-definable. We can use $L_{\omega_{1}}$ (which is $\Sigma_{1}\left(\left\{\omega_{1}\right\}\right)$ to correctly define \diamond over it and consequentially \vec{S} becomes definable over $L_{\omega_{1}}$ as well.

Whenever we force with a Suslin tree $\left(T,<_{T}\right)$, i.e. we force with its nodes to add an uncountable branche, we denote the forcing with T again.

We briefly introduce the almost disjoint coding forcing due to R. Jensen and R. Solovay. We will identify subsets of ω with their characteristic function and will use the word reals for elements of 2^{ω} and subsets of ω respectively. Let $D=\left\{d_{\alpha} \alpha<\aleph_{1}\right\}$ be a family of almost disjoint subsets of ω, i.e. a family such that if $r, s \in D$ then $r \cap s$ is finite. Let $X \subset \omega$ be a set of ordinals. Then there is a ccc forcing, the almost disjoint coding $\mathbb{A}_{D}(X)$ which adds a new real x which codes X relative to the family D in the following way

$$
\alpha \in X \text { if and only if } x \cap d_{\alpha} \text { is finite. }
$$

Definition 2.3. The almost disjoint coding $\mathbb{A}_{D}(X)$ relative to an almost disjoint family D consists of conditions $(r, R) \in[\omega]^{<\omega} \times D^{<\omega}$ and $(s, S)<$ (r, R) holds if and only if

1. $r \subset s$ and $R \subset S$.
2. If $\alpha \in X$ and $d_{\alpha} \in R$ then $r \cap d_{\alpha}=s \cap d_{\alpha}$.

We shall briefly discuss the L-definable, \aleph_{1}^{L}-sized almost disjoint family of reals D we will use throughout this article. The family D is the canonical almost disjoint family one obtains when recursively adding the $<_{L}$-least real x_{β} not yet chosen and replace it with $d_{\beta} \subset \omega$ where that d_{β} is the real which codes the initial segments of x_{β} using some recursive bijections between ω and $\omega^{<\omega}$.

3 Coding machinery

We continue with the construction of the appropriate notions of forcing which we want to use in our proof. The goal is to first define a coding forcings $\operatorname{Code}(x)$ for reals x, which will force for x that a certain Σ_{3}^{1}-formula $\Phi(x)$ becomes true in the resulting generic extension. The coding method is almost as in [7] and [6].

In a first step we destroy all members of \vec{S} via generically adding an ω_{1}-branch, that is we first form $\prod_{\alpha \in \omega_{1}} S_{\alpha}$ with finite support and force with it over L. Note that this is an \aleph_{1}-sized, ccc forcing over L, so in the generic
extension \aleph_{1} is preserved and CH remains to be true. We use W to denote this generic extension of L.

We let W be our ground model now. Let $x \in W$ be a real, and let $m, k \in \omega$. We simply write (x, m, k) for a real w which codes the triple (x, m, k) in a recursive way. The forcing $\operatorname{Code}(x, m, k, 1)$, which codes the triple (x, m, k) into $\overrightarrow{S^{1}}$ is defined as a two step iteration

$$
\operatorname{Code}(x, m, k, 1):=\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} * \dot{\mathbb{A}}(\dot{Y})
$$

where $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$ is the usual ω_{1}-Cohen forcing (i.e. adding an ω_{1}-set with countable conditions), as defined in L, and $\dot{\mathbb{A}}(\dot{Y})$ is the (name of) an almost disjoint coding forcing, coding a particular set \dot{Y} (to be defined as we proceed in the discussion) into as real. Note that as $\mathbb{C}\left(\omega_{1}\right)$ is defined in L instead of W, we can write the two step iteration $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} * \dot{\mathbb{A}}(\dot{Y})$ as defined over W as a three step iteration $\left(\left(\prod_{\alpha \in \omega_{1}} S_{\alpha}\right) \times \mathbb{C}\left(\omega_{1}\right)\right) * \dot{\mathbb{A}}(\dot{Y})$ over L. As $\mathbb{C}\left(\omega_{1}\right)$ is σ-closed, \vec{S} is still Suslin in $L\left[\mathbb{C}\left(\omega_{1}\right)\right]$, hence the forcing can be rewritten as $\left(\mathbb{C}\left(\omega_{1}\right) \times\left(\prod_{\alpha \in \omega_{1}} S_{\alpha}\right)\right) * \dot{\mathbb{A}}(\dot{Y})$. Consequentially the coding forcing does preserve \aleph_{1}^{L}.

Next we shall describe the factor $\dot{\mathbb{A}}(\dot{Y})$ in detail. We let $g \subset \omega_{1}$ be a $\mathbb{C}\left(\omega_{1}\right)^{L}$-generic filter over L, and let $\rho:\left[\omega_{1}\right]^{\omega} \rightarrow \omega_{1}$ be some canonically definable, constructible bijection between these two sets. We use ρ and g to define the set $h \subset \omega_{1}$, which eventually shall be the set of indices of ω-blocks of \vec{S}, where we code up the characteristic function of the real $((x, y, m)$. Let

$$
h:=\left\{\rho(g \cap \alpha): \alpha<\omega_{1}\right\}
$$

and let

$$
A:=\{\omega \gamma+2 n \mid \gamma \in h, n \notin(x, m, k)\} \cup\{\omega \gamma+2 n+1 \mid \gamma \in h, n \in(x, m, k) .\}
$$

$X \subset \omega_{1}$ be the $<$-least set (in some previously fixed well-order of $H\left(\omega_{2}\right)^{W}[g]$ which codes the following objects:

$$
\begin{aligned}
& \text { The <-least set of } \omega_{1} \text {-branches in } W \text { through elements of } \vec{S}^{1} \text { which } \\
& \text { code }(x, y, m) \text { at } \omega \text {-blocks which start at values in } h \text {, that is we collect } \\
& \left\{b_{\beta} \subset S_{\beta}^{1}: \beta=\omega \gamma+2 n, \gamma \in h \wedge n \in \omega \wedge n \notin(x, y, m)\right\} \text { and }\left\{b_{\beta} \subset S_{\beta}^{1}:\right. \\
& \beta=\omega \gamma+2 n+1, \gamma \in h \wedge n \in \omega \wedge n \in(x, y, m)\} \text {. }
\end{aligned}
$$

Note that, when working in $L[X]$ and if $\gamma \in h$ then we can read off (x, m, k) via looking at the ω-block of \vec{S}^{1}-trees starting at γ and determine which tree has an ω_{1}-branch in $L[X]$:
(*) $n \in(x, m, k)$ if and only if $S_{\omega \cdot \gamma+2 n+1}^{1}$ has an ω_{1}-branch, and $n \notin$ (x, m, k) if and only if $S_{\omega \cdot \gamma+2 n}^{1}$ has an ω_{1}-branch.

Indeed if $n \notin(x, m, k)$ then we added a branch through $S_{\omega \cdot \gamma+2 n}^{1}$. If on the other hand $S_{\omega \cdot \gamma+2 n}^{1}$ is Suslin in $L[X]$ then we must have added an ω_{1}-branch through $S_{\omega \cdot \gamma+2 n+1}^{1}$ as we always add an ω_{1}-branch through either $S_{\omega \cdot \gamma+2 n+1}^{1}$ or $S_{\omega \cdot \gamma+2 n}^{1}$ and adding branches through some S_{α}^{1} 's will not affect that some S_{β}^{1} is Suslin in $L[X]$, as \vec{S}^{1} is independent.

We note that we can apply an argument resembling David's trick ${ }^{1}$ in this situation. We rewrite the information of $X \subset \omega_{1}$ as a subset $Y \subset \omega_{1}$ using the following line of reasoning. It is clear that any transitive, \aleph_{1}-sized model M of ZF^{-}which contains X will be able to correctly decode out of X all the information. Consequentially, if we code the model (M, \in) which contains X as a set $X_{M} \subset \omega_{1}$, then for any uncountable β such that $L_{\beta}\left[X_{M}\right]=\mathrm{ZF}^{-}$ and $X_{M} \in L_{\beta}\left[X_{M}\right]$:

$$
L_{\beta}\left[X_{M}\right] \models \text { "The model decoded out of } X_{M} \text { satisfies }(*) \text { for every } \gamma \in h " .
$$

In particular there will be an \aleph_{1}-sized ordinal β as above and we can fix a club $C \subset \omega_{1}$ and a sequence ($M_{\alpha}: \alpha \in C$) of countable elementary submodels of $L_{\beta}\left[X_{M}\right]$ such that

$$
\forall \alpha \in C\left(M_{\alpha} \prec L_{\beta}\left[X_{M}\right] \wedge M_{\alpha} \cap \omega_{1}=\alpha\right)
$$

Now let the set $Y \subset \omega_{1}$ code the pair $\left(C, X_{M}\right)$ such that the odd entries of Y should code X_{M} and if $Y_{0}:=E(Y)$ where the latter is the set of even entries of Y and $\left\{c_{\alpha}: \alpha<\omega_{1}\right\}$ is the enumeration of C then

1. $E(Y) \cap \omega$ codes a well-ordering of type c_{0}.
2. $E(Y) \cap\left[\omega, c_{0}\right)=\varnothing$.
3. For all $\beta, E(Y) \cap\left[c_{\beta}, c_{\beta}+\omega\right)$ codes a well-ordering of type $c_{\beta+1}$.
4. For all $\beta, E(Y) \cap\left[c_{\beta}+\omega, c_{\beta+1}\right)=\varnothing$.

We obtain
(**) For any countable transitive model M of ZF^{-}such that $\omega_{1}^{M}=\left(\omega_{1}^{L}\right)^{M}$ and $Y \cap \omega_{1}^{M} \in M, M$ can construct its version of the universe $L[Y \cap$ $\left.\omega_{1}^{N}\right]$, and the latter will see that there is an \aleph_{1}^{M}-sized transitive model $N \in L\left[Y \cap \omega_{1}^{N}\right]$ which models $(*)$ for (x, m, k) and every $\gamma \in h \cap M$.

Thus we have a local version of the property (*).
In the next step $\dot{\mathbb{A}}(\dot{Y})$, working in $W[g]$, for $g \subset \mathbb{C}\left(\omega_{1}\right)$ generic over W, we use almost disjoint forcing $\mathbb{A}_{D}(Y)$ relative to our previously defined, almost disjoint family of reals $D \in L$ (see the paragraph after Definition 2.5)

[^1]to code the set Y into one real r. This forcing only depends on the subset of ω_{1} we code, thus $\mathbb{A}_{D}(Y)$ will be independent of the surrounding universe in which we define it, as long as it has the right ω_{1} and contains the set Y.

We finally obtained a real r such that
(***) For any countable, transitive model M of ZF $^{-}$such that $\omega_{1}^{M}=\left(\omega_{1}^{L}\right)^{M}$ and $r \in M, M$ can construct its version of $L[r]$ which in turn thinks that there is a transitive ZF^{-}-model N of size \aleph_{1}^{M} such that N believes (*) for (x, m, k) and every $\gamma \in h \cap M$.

Note that $(* * *)$ is a Π_{2}^{1}-formula in the parameters r and (x, m, k), as the set $h \cap M \subset \omega_{1}^{M}$ is coded into r. We will often suppress the reals $r,(x, m, k)$ when referring to $(* * *)$ as they will be clear from the context. We say in the above situation that the real (x, m, k) is written into \vec{S}^{1}, or that (x, m, k) is coded into $\overrightarrow{S^{1}}$ and r witnesses that (x, m, k) is coded. Likewise a forcing $\mathbb{P}_{(x, m, k), 0}$ is defined for coding the real (x, m, k) into $\overrightarrow{S^{0}}$.

The projective and local statement ($* * *$), if true, will determine how certain inner models of the surrounding universe will look like with respect to branches through \vec{S}. That is to say, if we assume that (***) holds for a real (x, m, k) and is the truth of it is witnessed by a real r. Then r also witnesses the truth of ($* * *$) for any transitive ZF $^{-}$-model M which contains r (i.e. we can drop the assumption on the countability of M). Indeed if we assume that there would be an uncountable, transitive $M, r \in M$, which witnesses that $(* * *)$ is false. Then by Löwenheim-Skolem, there would be a countable $N<M, r \in N$ which we can transitively collapse to obtain the transitive \bar{N}. But \bar{N} would witness that ($* * *$) is not true for every countable, transitive model, which is a contradiction.

Consequentially, the real r carries enough information that the universe $L[r]$ will see that certain trees from \vec{S}^{1} have branches in that

$$
n \in w=(x, y, m) \Rightarrow L[r] \models \text { " } S_{\omega \gamma+2 n+1}^{1} \text { has an } \omega_{1} \text {-branch". }
$$

and

$$
n \notin w=(x, y, m) \Rightarrow L[r] \models \text { " } S_{\omega \gamma+2 n}^{1} \text { has an } \omega_{1} \text {-branch". }
$$

Indeed, the universe $L[r]$ will see that there is a transitive ZF $^{-}$-model N which believes (*) for every $\gamma \in h \subset \omega_{1}$, the latter being coded into r. But by upwards Σ_{1}-absoluteness, and the fact that N can compute \vec{S}^{1} correctly, if N thinks that some tree in $\overrightarrow{S^{1}}$ has a branch, then $L[r]$ must think so as well.

Next we define the set of forcings which we will use in our proof. We aim to iterate the coding forcings we defined in the last section. As the first factor is always $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$, the iteration we aim for is actually a hybrid of an iteration and a product. We shall use a mixed support, that is we
use countable support on the product-like coordinates which use $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$, and finite support on the iteration-like coordinates which use almost disjoint coding forcing.
Definition 3.1. A mixed support iteration $\mathbb{P}=\left(\mathbb{P}_{\beta}: \beta<\alpha\right)$ is called allowable (or 0-allowable, to anticipate later developments) if $\alpha<\omega_{1}$ and there exists a bookkeeping function $F: \alpha \rightarrow H\left(\omega_{2}\right)^{2}$ such that \mathbb{P} is defined inductively using F as follows:

- If $F(0)=(x, i)$, where x is a real, $i \in\{0,1\}$, then $\mathbb{P}_{0}=\operatorname{Code}(x, i)$. Otherwise \mathbb{P}_{0} is the trivial forcing.
- Assume that $\beta>0$ and \mathbb{P}_{β} is defined, $G_{\beta} \subset \mathbb{P}_{\beta}$ is a generic filter over W. Moreover assume that $F(\beta)=(\dot{x}, i)$, where \dot{x} is a \mathbb{P}_{β}-name of a real, and i is a \mathbb{P}_{β}-name of an element of $\{0,1\}$ and $\dot{x}^{G_{\beta}}=x$. Then let $\left.\mathbb{P}(\beta)=\operatorname{Code}\left(x, i^{G_{\beta}}\right)=\mathbb{C}\left(\omega_{1}\right)\right)^{L} * \mathbb{A}(Y)$, for the reshaped $Y \subset \omega_{1}$ as being defined in the last section, and let $\mathbb{P}_{\beta+1}=\mathbb{P}_{\beta} \times\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} * \dot{\mathbb{A}}(\dot{Y})$. Otherwise we force with just $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$.
We use finite support on the iteration-like parts where almost disjoint coding is used and countable support on the product-like parts where ω_{1}-Cohen forcing, as computed in L is used.

Informally speaking, a (0-) allowable forcing just decides to code the reals which the bookkeeping F provides into either $\overrightarrow{S^{0}}$ or $\overrightarrow{S^{1}}$. Note that the notion of allowable can be defined in exactly the same way over any $W[G]$, where G is a \mathbb{P}-generic filter over W for an allowable forcing.

We also add that we could have defined allowable in an equivalent way if we first added, over L, ω_{1}-many Cohen subsets of $\omega_{1}, \vec{C}=\left(C_{\alpha}: \alpha<\omega_{1}\right)$ with a countably supported product, then, in a second step destroy all the Suslin trees from \vec{S} (note \vec{S} remains independent after adding the ω_{1}-many ω_{1}-Cohen subsets) and dub the resulting universe W^{\prime}. Then we can define allowable over the new ground model W^{\prime} as just a finitely supported iteration of almost disjoint coding forcings which select at each step injectively one element C from \vec{C} and the real given by the bookkepping F and the $i \in\{0,1\}$ and then code up all the branches of the trees from \vec{S}^{0} or \vec{S}^{1} according to the real x we code for every ω-block with starting value in $h \subset \omega_{1}$ derived from C as in the last section. That is to say, we could have moved the product factors in an iteration of allowable forcings right at the beginning of our iteration, which we are allowed to do anyway, as it is a product. Our current and equivalent approach is a bit easier in terms of notation for later parts of the proof, so we defined allowable the way we did.

We obtain the following first properties of allowable forcings:
Lemma 3.2. 1. If $\mathbb{P}=(\mathbb{P}(\beta): \beta<\delta) \in W$ is allowable then for every $\beta<\delta, \mathbb{P}_{\beta} \Vdash|\mathbb{P}(\beta)|=\aleph_{1}$, thus every factor of \mathbb{P} is forced to have size \aleph_{1}.
2. Every allowable forcing over W preserves ω_{1}.
3. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.
To see the second item we exploit some symmetry. Indeed, every allowable $\mathbb{P}=*_{\beta<\delta} P(\beta)=*_{\beta<\delta}\left(\left(\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} * \dot{\mathbb{A}}\left(\dot{Y}_{\beta}\right)\right) \in W\right.$ can be rewritten as $\left(\prod_{\beta<\delta}\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}\right) *\left(*_{\beta<\delta} \dot{\mathbb{A}}_{D}\left(\dot{Y}_{\beta}\right)\right)$ (again with countable support on the $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$ part and finite support on the almost disjoint coding forcings). Using that $W=L\left[\prod_{\alpha \in \omega_{1}} S_{\alpha}\right]$ we can write \mathbb{P} as a forcing over L as follows: $\left.\left(\prod_{\alpha \in \omega_{1}} S_{\alpha}\right) \times \prod_{\beta<\delta}\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}\right) *\left(*_{\beta<\delta} \dot{\mathbb{A}}_{D}\left(\dot{Y}_{\beta}\right)\right)$. This is the same as $\left.\left(\prod_{\beta<\delta}\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} \times \prod_{\alpha \in \omega_{1}} S_{\alpha}\right)\right) *\left(*_{\beta<\delta} \dot{\mathbb{A}}_{D}\left(\dot{Y}_{\beta}\right)\right)$

The latter representation is easily seen to be of the form $\mathbb{P}_{1} \times \mathbb{P}_{2} *$ $\left(*_{\beta<\delta} \dot{\mathbb{A}}_{D}\left(\dot{Y}_{\beta}\right)\right)$, where \mathbb{P}_{1} is σ-closed, \mathbb{P}_{2} has the ccc, and the third part is a finite support iteration of ccc forcings, hence ω_{1} is preserved.

To see that the third item is true, we note that the definition of almost disjoint coding forcing only depends on the subset of ω_{1} we want to code and is independent of the surrounding universe $V \supset W$ over which it is defined as long as $Y \in V$. In particular, if $\left(Y_{\alpha} \subset \omega_{1}: \alpha<\beta\right)$ is a sequence of subsets of ω_{1} in some ground model, then the finitely supported iteration $*_{\alpha<\beta} \dot{\mathbb{A}}\left(\check{Y}_{\alpha}\right)$ is isomorphic to the finitely supported product $\prod_{\alpha<\beta} \mathbb{A}\left(Y_{\alpha}\right)$. So we immediately see that if

$$
\mathbb{P}^{1}=*_{\beta<\delta^{1}} P(\beta)=\prod_{\beta<\delta^{1}}\left(\left(\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}\right) *_{\beta<\delta^{1}} \dot{\mathbb{A}}\left(\dot{Y}_{\beta}\right)\right)
$$

and

$$
\mathbb{P}^{2}=*_{\beta<\delta^{2}} P(\beta)=\prod_{\beta<\delta^{2}}\left(\left(\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} *_{\beta<\delta^{2}} \dot{\mathbb{A}}\left(\dot{Y}_{\beta}\right)\right)\right.
$$

then

$$
\mathbb{P}^{1} \times \mathbb{P}^{2}=\prod_{\beta<\delta^{1}+\delta^{2}}\left(\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L} *_{\beta<\delta^{1}} \dot{\mathbb{A}}\left(\dot{Y}_{\beta}\right)\right) *_{\beta<\delta^{2}} \dot{\mathbb{A}}\left(\dot{Y}_{\beta}\right)
$$

which is allowable.
The proof of the second assertion of the last lemma immediately gives us the following:

Corollary 3.3. Let $\mathbb{P}=(\mathbb{P}(\beta): \beta<\delta) \in W$ be an allowable forcing over W. Then $W[\mathbb{P}] \models \mathrm{CH}$. Further, if $\mathbb{P}=\left(\mathbb{P}(\alpha): \alpha<\omega_{1}\right) \in W$ is an ω_{1}-length iteration such that each initial segment of the iteration is allowable over W, then $W[\mathbb{P}] \models \mathrm{CH}$.

Let $\mathbb{P}=(\mathbb{P}(\beta): \beta<\delta)$ be an allowable forcing with respect to some $F \in W$. The set of (names of) reals which are enumerated by F we call the set of reals coded by \mathbb{P}. That is, for every β, if we let \dot{x}_{β} be the (name) of a
real listed by $F(\beta)$ and if we let $G \subset \mathbb{P}$ be a generic filter over W and finally if we let $\dot{x}_{\beta}^{G}=: x_{\beta}$, then we say that $\left\{x_{\beta}: \beta<\alpha\right\}$ is the set of reals coded by \mathbb{P} and G (though we will suppress the G). Next we show, that iterations of 0 -allowable forcings will not add unwanted witnesses to the Σ_{3}^{1}-formula $\psi(w, i)$ which corresponds to the formula ($* * *$):

$$
\begin{aligned}
& \psi(w, i) \equiv \exists r \forall M\left(M \text { is countable and transitive and } M \models \text { ZF }^{-}\right. \\
& \left.\qquad \text { and } \omega_{1}^{M}=\left(\omega_{1}^{L}\right)^{M} \text { and } r, w \in M \rightarrow M \models \varphi(w, i)\right)
\end{aligned}
$$

where $\varphi(w, i)$ asserts that in M's version of $L[r]$, there is a transitive, $\aleph_{1}^{M_{-}}$ sized ZF^{-}-model which witnesses that w is coded into \vec{S}^{i}.

Lemma 3.4. If $\mathbb{P} \in W$ is allowable, $\mathbb{P}=\left(\mathbb{P}_{\beta}: \beta<\delta\right), G \subset \mathbb{P}$ is generic over W and $\left\{x_{\beta}: \beta<\delta\right\}$ is the set of reals which is coded by \mathbb{P}. Let $\psi\left(v_{0}\right)$ be the distinguished formula from above. Then in $W[G]$, the set of reals which satisfy $\psi\left(v_{0}\right)$ is exactly $\left\{x_{\beta}: \beta<\delta\right\}$, that is, we do not code any unwanted information accidentally.

Proof. Let G be \mathbb{P} generic over W. Let $g=\left(g_{\beta}: \beta<\delta\right)$ be the set of the δ many ω_{1} subsets added by the $\left(\mathbb{C}\left(\omega_{1}\right)\right)^{L}$-part of the factors of \mathbb{P}. We let $\rho:\left(\left[\omega_{1}\right]^{\omega}\right)^{L} \rightarrow \omega_{1}$ be our fixed, constructible bijection and let $h_{\beta}=$ $\left\{\rho\left(g_{\beta} \cap \alpha\right): \alpha<\omega_{1}\right\}$. Note that the family $\left\{h_{\beta}: \beta<\delta\right\}$ forms an almost disjoint family of subsets of ω_{1}. Thus there is $\alpha<\omega_{1}$ such that for arbitrary distinct $\beta_{1}, \beta_{2}<\delta, \alpha>h_{\beta_{1}} \cap h_{\beta_{2}}$ and additionally, assume that α is an index which does not show up in the set of indices of the trees we code with \mathbb{P}.

We let $S_{\alpha}^{1} \in \vec{S}^{1}$. We claim that there is no real in $W[G]$ such that $W[G] \models L[r] \models$ " S_{α}^{1} has an ω_{1}-branch". We show this by pulling out the forcing S_{α}^{1} out of \mathbb{P}. Indeed if we consider $W[\mathbb{P}]=L\left[\mathbb{Q}^{0}\right]\left[\mathbb{Q}^{1}\right]\left[\mathbb{Q}^{2}\right][\mathbb{P}]$, and if S_{α}^{1} is as described already, we can rearrange this to $W[\mathbb{P}]=L\left[\mathbb{Q}^{0}\right]\left[\mathbb{Q}^{\prime 1} \times\right.$ $\left.S_{\alpha}^{1}\right]\left[\mathbb{Q}^{2}\right][\mathbb{P}]=W\left[\mathbb{P}^{\prime}\right]\left[S_{\alpha}^{1}\right]$, where $\mathbb{Q}^{\prime 1}$ is $\prod_{\beta \neq \alpha} S_{\beta}^{1}$ and \mathbb{P}^{\prime} is $\mathbb{Q}^{0} * \mathbb{Q}^{\prime 1} * \mathbb{Q}^{2} * \mathbb{P}$.

Note now that, as S_{α}^{1} is ω-distributive, $2^{\omega} \cap W[\mathbb{P}]=2^{\omega} \cap W\left[\mathbb{P}^{\prime}\right]$, as S_{α} is still a Suslin tree in $W\left[\mathbb{P}^{\prime}\right]$ by the fact that \vec{S}^{0} and \vec{S}^{1} are independent, and no factor of \mathbb{P}^{\prime} besides the trees from \vec{S}^{0} and $\overrightarrow{S^{1}}$ used in \mathbb{P}^{\prime} destroys Suslin trees. But this implies that

$$
W\left[\mathbb{P}^{\prime}\right] \models \neg \exists r L[r] \models " S_{\alpha}^{1} \text { has an } \omega_{1} \text {-branch" }
$$

as the existence of an ω_{1}-branch through S_{α}^{1} in the inner model $L[r]$ would imply the existence of such a branch in $W\left[\mathbb{P}^{\prime}\right]$. Further and as no new reals appear when passing to $W[\mathbb{P}]$ we also get

$$
W[\mathbb{P}] \models \neg \exists r L[r] \models " S_{\alpha}^{1} \text { has an } \omega_{1} \text {-branch" }
$$

On the other hand any unwanted information, i.e. any $(x, m) \notin\left\{\left(x_{\beta}, m_{\beta}\right)\right.$: $\beta<\delta\}$ such that $W[G] \models \psi((x, i, m))$ will satisfy that there is a real r such
that

$$
n \in(x, i, m) \rightarrow L[r] \models " S_{\omega \gamma+2 n+1}^{1} \text { has an } \omega_{1} \text {-branch" }
$$

and

$$
n \notin(x, i, m) \rightarrow L[r] \models " S_{\omega \gamma+2 n}^{1} \text { has an } \omega_{1} \text {-branch". }
$$

by the discussion of the last subsection for ω_{1}-many γ 's.
But by the argument above, only trees which we used in one of the factors of \mathbb{P} have this property, so there can not be unwanted codes on the \vec{S}^{1}-side. But the very same argument shows the assertion also for the \vec{S}^{0}-side. So for our fixed α, there is no real r which codes an ω_{1} branch over $L[r]$. But any unwanted information would need not only one but even \aleph_{1}-many such α 's chosen as above. This shows that there can not be unwanted information in $W[G]$, as claimed.

$3.1 \quad \alpha$-allowable forcings

The notion of 0 -allowable will form the base case of an inductive definition. Let $\alpha \geqslant 0$ be an ordinal and assume we defined already the notion of α allowable. Then we can inductively define the notion of $\alpha+1$-allowable as follows.

Suppose that $\gamma<\omega_{1}, F$ is a bookkeeping function,

$$
F: \gamma \rightarrow H\left(\omega_{2}\right)^{5}
$$

and

$$
\mathbb{P}=\left(\mathbb{P}_{\beta}: \beta<\gamma\right)
$$

is a allowable forcing relative to F (in fact relative to some bookkeeping F^{\prime} determined by F in a unique way - the difference here is not relevant).

Suppose that

$$
E=E_{0} \cup E_{1}=\left\{\left(\dot{y}_{\delta}, m_{\delta}, k_{\delta}\right): \delta \leqslant \alpha\right\} \cup\left\{\left(\dot{x}_{\delta}, i_{\delta}\right): \delta \leqslant \alpha, i_{\delta} \in\{0,1\}\right\}
$$

where $m_{\delta}, k_{\delta} \in \omega$ and every $\dot{x}_{\delta}, \dot{y}_{\delta}$ is a \mathbb{P}-name of a real and for every two ordinals $\beta, \gamma<\alpha$, if \dot{y}_{β} and \dot{y}_{γ} are not the empty set, then $\mathbb{P} \Vdash\left(\dot{y}_{\beta}, m_{\beta}, k_{\beta}\right) \neq$ $\left(\dot{y}_{\gamma}, m_{\gamma}, k_{\gamma}\right)$. Intuitively, E_{0} will serve as the set of pairs of boldface Σ_{3}^{1}-sets, for which we already obtained rules which allow us to separate them; whereas E_{1} is the set of (names of) reals which we decided to never code along our α-allowable iteration using the coding forcing $\operatorname{Code}(x, a, b, i)$ for two fixed natural numbers a and b. The latter plays a role in establishing the eventual failure of Π_{3}^{1}-reduction.

Suppose that for every $\delta \leqslant \alpha,\left(\mathbb{P}_{\beta}: \beta<\gamma\right)$ is δ-allowable with respect to $E \upharpoonright \delta=\left(E_{0} \upharpoonright \delta\right) \cup\left(E_{1} \upharpoonright \delta\right)=\left\{\left(\dot{y}_{\eta}, m_{\eta}, k_{\eta}\right): \eta<\delta\right\} \cup\left\{\dot{x}_{\eta}: \eta<\delta\right\}$ and F.

We assume first that $\dot{x}_{\alpha+1}$ is the empty set and $\dot{y}_{\alpha+1}$ is a \mathbb{P}-name for a real and $m_{\alpha+1}, k_{\alpha+1} \in \omega$ such that $\mathbb{P} \Vdash \forall \delta \leqslant \alpha\left(\left(\dot{y}_{\delta}, m_{\delta}, k_{\delta}\right) \neq\left(\dot{y}_{\alpha+1}, m_{\alpha+1}, k_{\alpha+1}\right)\right)$. Then we say that $\left(\mathbb{P}_{\beta}: \beta<\gamma\right)$ is $\alpha+1$-allowable with respect to $E \cup$ $\left.\left\{\dot{y}_{\alpha+1}, m_{\alpha+1}, k_{\alpha+1}\right)\right\}$ and F if it obeys the following rules.

1. Whenever $\beta<\gamma$ is odd and such that there is a \mathbb{P}_{β}-name \dot{x} of a real and a \mathbb{P}_{β}-name for an integer i such that

$$
F(\beta)=\left(\dot{x}, \dot{y}_{\alpha+1}, m_{\alpha+1}, k_{\alpha+1}, i\right)
$$

and $\dot{y}_{\alpha+1}$ is in fact a \mathbb{P}_{β}-name, and for G_{β} a \mathbb{P}_{β}-generic over $W, W\left[G_{\beta}\right]$ thinks that
$\exists \mathbb{Q}(\mathbb{Q}$ is α-allowable with respect to $E \wedge$

$$
\left.\mathbb{Q} \Vdash x \in A_{m}\left(y_{\alpha+1}\right)\right),
$$

where $x=\dot{x}^{G}$, and $y_{\alpha}=\dot{y}_{\alpha+1}^{G}$. Then continuing to argue in $W\left[G_{\beta}\right]$, we let

$$
\mathbb{P}(\beta)=\operatorname{Code}((x, y, m, k), 0)
$$

Note that we confuse here the quadruple (x, y, m, k) with one real which codes this quadruple.
2. Whenever $\beta<\gamma$ is such that there is a \mathbb{P}_{β}-name \dot{x} of a real and a \mathbb{P}_{β}-name i of an integer in $\{0,1\}$ such that

$$
F(\beta)=\left(\dot{x}, \dot{y}_{\alpha+1}, m_{\alpha+1}, k_{\alpha+1}, i\right)
$$

and for G_{β} which is \mathbb{P}_{β}-generic over $W, W\left[G_{\beta}\right]$ thinks that
$\forall \mathbb{Q}_{1}\left(\mathbb{Q}_{1}\right.$ is α-allowable with respect to E

$$
\left.\rightarrow \neg\left(\mathbb{Q}_{1} \Vdash x \in A_{m}\left(\dot{y}_{\alpha+1}\right)\right)\right)
$$

but there is a forcing \mathbb{Q}_{2} such that $W\left[G_{\beta}\right]$ thinks that
\mathbb{Q}_{2} is α-allowable with respect to E and

$$
\mathbb{Q}_{2} \Vdash x \in A_{k}\left(\dot{y}_{\alpha+1}\right)
$$

Then continuing to argue in $W\left[G_{\beta}\right]$, we force with

$$
\mathbb{P}(\beta):=\operatorname{Code}((x, y, m, k), 1)
$$

Note that we confuse here again the quadruple (x, y, m, k) with one real w which codes this quadruple.
3. If neither 1 nor 2 is true, then either

$$
\mathbb{P}(\beta)=\operatorname{Code}((x, y, m, k), 1)
$$

or

$$
\mathbb{P}(\beta)=\operatorname{Code}((x, y, m, k), 0)
$$

depending on whether $i^{G_{\beta}} \in\{0,1\}$ was 0 or 1 .
4. If $F(\beta)=(\dot{x}, \dot{y}, m, k, i)$ and for our \mathbb{P}_{β}-generic filter G, $W[G] \models \forall \delta \leqslant$ $\alpha+1\left(\left(\dot{y}^{G}, m, k\right) \notin E^{G}\right)$, then, working over $W\left[G_{\beta}\right]$ let

$$
\mathbb{P}(\beta)=\operatorname{Code}\left((x, y, m, k), i^{G_{\beta}}\right)
$$

depending on whether $i^{G_{\beta}} \in\{0,1\}$ was 0 or 1 .
If, on the other hand $\dot{y}_{\alpha+1}$ is the empty set as is $m_{\alpha+1}, k_{\alpha+1}$ and $\dot{x}_{\alpha+1}$ is the \mathbb{P}-name of a real, then we define $\alpha+1$-allowable with respect to F and $E \cup\left\{\left(\dot{x}_{\alpha+1}, i\right)\right\}$, where $i \in\{0,1\}$ to be α-allowable relative to E and F plus the additional rule, that we will not use factors in our iteration which contain Code $\left(\dot{x}_{\alpha+1}, a, b, i\right)$.

This ends the definition for the successor step $\alpha \rightarrow \alpha+1$. For limit ordinals α, we say that a allowable forcing \mathbb{P} is α allowable with respect to E and F if for every $\eta<\alpha,\left(\mathbb{P}_{\beta}: \beta<\gamma\right)$ is η-allowable with respect to $E \upharpoonright \eta$ and some F^{\prime}.

We add a couple of remarks concerning the last definition.

- By definition, if $\delta_{2}<\delta_{1}$ and \mathbb{P}_{1} is δ_{1}-allowable with respect to $E=$ $\left\{\left(\dot{y}_{\beta}, m_{\beta}, k_{\beta}\right): \beta \leqslant \delta_{1}\right\} \cup\left\{\left(\dot{x}_{\beta}, i_{\beta}\right): \beta \leqslant \delta_{1}\right.$ and some F_{1}, then \mathbb{P}_{1} is also δ_{2}-allowable with respect to $E \upharpoonright \delta_{2}=\left\{\left(\dot{y}_{\beta}, m_{\beta}, k_{\beta}\right): \beta \leqslant \delta_{2}\right\} \cup$ $\left\{\left(\dot{x}_{\beta}, i_{\beta}\right): \beta \leqslant \delta_{2}, i_{\beta} \in\{0,1\}\right\}$ and an altered bookkeeping function F^{\prime}.
- The notion of α-allowable can be defined in a uniform way over any allowable extension W^{\prime} of W.
- We will often just say that some iteration \mathbb{P} is α-allowable, by which we mean that there is a set E and a bookkeeping F such that \mathbb{P} is α-allowable with respect to E and F.

4 Closure under products

Lemma 4.1. Let α be an ordinal, assume that W^{\prime} is some α-allowable generic extension of W, and that $\mathbb{P}^{1}=\left(\mathbb{P}_{\beta}^{1}: \beta<\delta\right)$ and $\mathbb{P}^{2}=\left(\mathbb{P}_{\beta}^{2}\right.$: $\beta<\delta$) are two α-allowable forcings over W^{\prime} with respect to a common set $E=E_{0} \cup E_{1}=\left\{\left(\dot{y}_{\delta}, m_{\delta}, k_{\delta}\right): \delta<\alpha\right\} \cup\left\{\left(\dot{x}_{\delta}, i_{\delta}\right): \delta<\alpha\right\}$ and bookkeeping functions F_{1} and F_{2} respectively. Then there is a bookkeeping function F such that $\mathbb{P}_{1} \times \mathbb{P}_{2}$ is α-allowable over W^{\prime} with respect to E and F.

Proof. We define $F \upharpoonright \delta_{1}$ to be F_{1}. For values $\delta_{1}+\beta>\delta_{1}$ we let $F\left(\delta_{1}+\beta\right)$ be such that its value on the first four coordinates equal the first four coordinates of $F_{2}(\beta)$, i.e. $F\left(\delta_{1}+\beta\right)=(\dot{x}, \dot{y}, m, k, i)$ for some $i \in\{1,2\}$ where $F_{2}(\beta)=$ $\left(\dot{x}, \dot{y}, m, k, i^{\prime}\right)$. We claim now that we can define the remaining value of $F(\beta)$, in such a way that the lemma is true. This is shown by induction on $\beta<\delta_{2}$.

First we note that for $E=E_{0} \cup E_{1}$ we can fully concentrate on the set E_{0} in our argument, that is the odd stages β of our iteration, as E_{1} defines a set of coding forcings we must not use in an α-allowable forcing with respect to E, and this is clearly closed under products.

Let $\left(\mathbb{P}_{2}\right)_{\beta}$ be the iteration of \mathbb{P}_{2} up to the odd stage $\beta<\delta_{2}$. Assume, that $\mathbb{P}_{1} \times\left(\mathbb{P}_{2}\right)_{\beta}$ is in fact an α-allowable forcing relative to E and F. Then we have that $F\left(\delta_{1}+\beta\right) \upharpoonright 5=F_{2}(\beta) \upharpoonright 5=(\dot{x}, \dot{y}, m, k)$, and we claim that at that odd stage,

Claim 1. If we should apply case $1,2,3$, or 4 when considering the forcing $\mathbb{P}_{1} \times \mathbb{P}_{2}$ as an α-allowable forcing relative to $E=E_{0} \cup E_{1}$ over the model W^{\prime}, we must apply the same case when considering \mathbb{P}_{2} as an α-allowable forcing over the model W^{\prime} relative to E.

Once the claim is shown, the lemma can be proven as follows by induction on $\beta<\delta_{2}$: we work in the model $W^{\prime}\left[\mathbb{P}_{1}\right]\left[\left(\mathbb{P}_{2}\right)_{\beta}\right]$, consider $F\left(\delta_{1}+\beta\right) \upharpoonright 5=$ $F_{2}(\beta) \upharpoonright 5$, and ask which of the four cases has to be applied. By the claim, it will be the same case, as when considering \mathbb{P}_{2} over W^{\prime} as an α-allowable forcing relative to E and F_{2}. In particular the forcing $\mathbb{P}_{2}(\beta)$ we define at stage β will be a choice obeying the rules of α-allowable even when working over the model $W^{\prime}\left[\mathbb{P}_{1}\right]\left[\left(\mathbb{P}_{2}\right)_{\beta}\right]$. This shows that $\mathbb{P}_{1} \times \mathbb{P}_{2}$ is an α-allowable forcing relative to E and some F over W^{\prime}.

The proof of the claim is via induction on α. So we assume that $\alpha=1$ and both \mathbb{P}_{1} and \mathbb{P}_{2} are 1-allowable with respect to $E=E_{0} \cup E_{1}$. As the case $E=E_{1}$ is clear, we can assume that $E=E_{0}=\{\dot{y}, m, k\}$. We shall show that there is a bookkeeping F such that $\left.\left.\left(\mathbb{P}_{2}\right)_{\beta}: \beta<\delta_{2}\right\}\right)$ is still 1-allowable with respect to E, even when considered in the universe $W^{\prime}\left[\mathbb{P}_{1}\right]$. We assume first that at stage $\delta_{1}+\beta$ of $\mathbb{P}_{1} \times \mathbb{P}_{2}$ case 1 in the definition of 1-allowable applies, when working in the model $W^{\prime}\left[\mathbb{P}_{1}\right]\left[\left(\mathbb{P}_{2}\right)_{\beta}\right]$ relative to E and F. Thus

$$
F(\beta) \upharpoonright 5=(\dot{x}, \dot{y}, m, k)
$$

and $(\dot{y}, m, k) \in E$ and for any $G^{1} \times G_{\beta}$ which is $\mathbb{P}_{1} \times\left(\mathbb{P}_{2}\right)_{\beta \text {-generic over }} W^{\prime}$, if $\dot{x}^{G_{\beta}}=x$ and $\dot{y}^{G_{\beta}}=y$, the universe $W^{\prime}\left[G_{1} \times G_{\beta}\right]$ thinks that
$\exists \mathbb{Q}(\mathbb{Q}$ is 0 -allowable with respect to E and some $\mathrm{F} \wedge$

$$
\left.\mathbb{Q} \Vdash x \in A_{m}(y)\right) .
$$

Thus, if we work over $W^{\prime}\left[G_{\beta}\right]$ instead it will think

$$
\begin{array}{r}
\exists\left(\mathbb{P}_{1} \times \mathbb{Q}\right)\left(\mathbb{P}_{1} \times \mathbb{Q} \text { is 0-allowable } \wedge\right. \\
\left.\mathbb{P}_{1} \times \mathbb{Q} \Vdash x \in A_{m}(y)\right) .
\end{array}
$$

Thus, at stage β, we are in case 1 as well, when considering \mathbb{P}_{2} as an 1allowable forcing over W^{\prime} relative to E.

If, at stage β, case 2 applies, when considering $\mathbb{P}_{1} \times \mathbb{P}_{2}$ as a 1 -allowable forcing with respect to E over W^{\prime}, then we argue first that case 1 is impossible when considering \mathbb{P}_{2} as a 1-allowable forcing over W^{\prime}. Indeed, assume for a contradiction that case 1 must be applied, then, by assumption, $\mathbb{P}_{2}(\beta)$ will force that $x \in A_{m}(y)$. Yet, by Shoenfield absoluteness, $\mathbb{P}_{2}(\beta)$ would witness that we are in case 1 at stage β when considering $\mathbb{P}_{1} \times \mathbb{P}_{2}$ as 1-allowable with respect to E over W^{\prime}, which is a contradiction.

Thus we can not be in case 1 and we shall show that we are indeed in case 2 , i.e. there is a 0 -allowable forcing \mathbb{Q}, such that $\mathbb{Q} \Vdash x \in A_{k}(y)$, but such a \mathbb{Q} exists, namely $\mathbb{P}_{2}(\beta)$,

Finally, if at stage β, case 3 applies when considering \mathbb{P}_{2} as a 1-allowable forcing with respect to E over $W^{\prime}\left[\mathbb{P}_{1}\right]$, we claim that we must be in case 3 as well, when considering \mathbb{P}_{2} over just W^{\prime}. If not, then we would be in case 1 or 2 at β. Assume without loss of generality that we were in case 1 , then, as by assumption \mathbb{P}_{2} is 1-allowable over $W^{\prime}, \mathbb{P}_{2}(\beta)$ will force $\Vdash x \in A_{m}(y)$. But this is a contradiction, so we must be in case 3 as well. This finishes the proof of the claim for $\alpha=1$.

We shall argue now that the Claim is true for $\alpha+1$-allowable forcings provided we know that it is true for α-allowable forcings. Again we can focus on the case when $\alpha+1$ allowable forcings are obtained via enlarging E_{0}, as enlarging E_{1} just means to avoid certain coding forcings, which is trivial to be closed under products. We shall show the claim via induction on β. So assume that $\mathbb{P}_{1} \times\left(\mathbb{P}_{2}\right)_{\beta}$ is $\alpha+1$-allowable with respect to $E=E \upharpoonright$ $\alpha \cup\left\{\left(\dot{y}, m_{\alpha}, k_{\alpha}\right)\right\}$ and an F whose domain is $\delta_{1}+\beta$. We look at

$$
F\left(\delta_{1}+\beta\right) \upharpoonright 5=F_{2}(\beta) \upharpoonright 5=\left(\dot{x}, \dot{y}, m_{\alpha}, k_{\alpha}\right)
$$

We concentrate on the case where β is such that case 2 applies when considering $\mathbb{P}_{1} \times\left(\mathbb{P}_{2}\right)_{\beta}$ over W^{\prime}. The rest follows similarly. Our goal is to show that case 2 must apply when considering the β-th stage of the forcing using F_{2} and E over $W^{\prime}\left[\left(\mathbb{P}_{2}\right)_{\beta}\right]$ as well.

Assume first for a contradiction, that, when working over $W^{\prime}\left[\left(\mathbb{P}_{2}\right)_{\beta}\right]$, at stage β, case 1 applies. Then, for any $\left(\mathbb{P}_{2}\right)_{\beta^{\prime}}$-generic filter G_{β} over W^{\prime},

$$
\begin{aligned}
& W^{\prime}\left[G_{\beta}\right]=\exists \mathbb{Q}\left(\mathbb{Q} \text { is } \alpha \text {-allowable with respect to } E \upharpoonright \alpha \text { and some } F^{\prime}\right. \text { and } \\
&\left.\mathbb{Q} \Vdash x \in A_{m}(y)\right)
\end{aligned}
$$

Now, as \mathbb{P}_{2} is α-allowable, we know that $\mathbb{P}_{2}(\beta)$ is such that $\mathbb{P}_{2}(\beta) \Vdash x \in$ $A_{m}(y)$.

Thus, using the upwards-absoluteness of Σ_{3}^{1}-formulas, at stage β of the $\alpha+1$-allowable forcing determined by F and E, there is an α-allowable forcing \mathbb{Q} with respect to $E \upharpoonright \alpha$ which forces $x \in A_{m}(y)$, namely $\mathbb{P}_{2}(\beta)$.

But this is a contradiction, as we assumed that when considering $\mathbb{P}_{1} \times\left(\mathbb{P}_{2}\right)_{\beta}$ over W^{\prime} at stage β, case 1 does not apply, hence such an α-allowable forcing should not exist.

So we know that case 1 is not true. We shall show now that case 2 must apply at stage β when considering \mathbb{P}_{2} over the universe W^{\prime}. By assumption we know that

$$
\begin{aligned}
& W^{\prime}\left[\mathbb{P}_{1}\right]\left[\left(\mathbb{P}_{2}\right)_{\beta}\right] \models \exists \mathbb{Q}_{2}\left(\mathbb{Q}_{2} \text { is } \alpha \text {-allowable with respect to } E \upharpoonright \alpha\right. \text { and } \\
& \mathbb{Q}_{2} \Vdash x \in A_{k}(y)
\end{aligned}
$$

As \mathbb{P}_{1} is $\alpha+1$-allowable with respect to E and F_{1}, it is also α-allowable with respect to $E \upharpoonright \alpha$ and some altered F_{1}^{\prime}, thus, as a consequence from the induction hypothesis, we obtain that

$$
W^{\prime}\left[\left(\mathbb{P}_{2}\right)_{\beta}\right] \models \mathbb{P}_{1} \times \mathbb{Q}_{2} \text { is } \alpha \text {-allowable and } \mathbb{P}_{1} \times \mathbb{Q}_{2} \Vdash x \in A_{k}(y)
$$

But then, $\mathbb{P}_{1} \times \mathbb{Q}_{2}$ witnesses that we are in case 2 as well when at stage β of \mathbb{P}_{2} over W^{\prime}. This ends the proof of the claim and so we have shown the lemma.

5 Ideas for the proof

This section will be used to briefly explain the set up and the structure of the proof of the main theorem. There are two goals we aim to accomplish. First, we want to force $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{1}}$-separation. For this, we will use an ω_{1}-length iteration. We list all Σ_{3}^{1}-formulas in two free variables $\left(\varphi_{n}\left(v_{0}, v_{1}\right) \mid n \in \omega\right)$. We shall use a bookkeeping device which enumerates simultaneously in an ω_{1}-length list all pairs of natural numbers $(m, k) \in \omega^{2}$ and (names of) reals \dot{y}. These objects m, k, \dot{y} correspond to pairs of $\boldsymbol{\Sigma}_{\mathbf{3}}^{1}$-sets $A_{m}(\dot{y})$ and $A_{k}(\dot{y})$ (the (name of a) real \dot{y} serves as a parameter in the k-th and m-th Σ_{3}^{1}-formula φ_{m} and φ_{k}) we want to separate.

At the same time we want to create a universe over which there are two (lightface) Π_{3}^{1}-sets B_{0} and B_{1} which we will design in such a way, that no (boldface) pair of Π_{3}^{1}-sets exists, which reduces B_{0} and B_{1}.

We settle to work towards Σ_{3}^{1}-separation on the odd stages of our iteration, whereas we work towards a failure of Π_{3}^{1}-reduction on the even stages of the iteration. The iteration itself will consist of the coding forcings $\operatorname{Code}(x, y, m, k)$ applied over L to make certain reals of the form (x, y, m, k) to satisfy our two Σ_{3}^{1}-formulas $\Phi_{0}(x, y, m, k)$ or $\Phi_{1}(x, y, m, k)$. The final goal is that for any fixed pair of natural numbers m, k, and any parameter $y \in \omega^{\omega}$, there is a real parameter $R_{y, m, k}$ and a fixed Σ_{3}^{1} formula σ such that the sets

$$
D_{y, m, k}^{0}\left(R_{y, m, k}\right):=\left\{x \mid \Phi_{0}(x, y, m, k) \wedge \sigma\left(x, R_{y, m, k}\right)\right\}
$$

and

$$
D_{y, m, k}^{1}\left(R_{y, m, k}\right):=\left\{x \mid \Phi_{1}(x, y, m, k) \wedge \sigma\left(x, R_{y, m, k}\right)\right\}
$$

will become the separating sets for the pair of $\Sigma_{3}^{1}(y)$-definable sets $A_{m}(y)$ and $A_{k}(y)$, i.e. $A_{m}(y) \subset D_{y, m, k}^{0}, A_{k}(y) \subset D_{y, m, k}^{1}$ and $D_{y, m, k}^{0}\left(R_{y, m, k}\right) \cup$ $D_{y, m, k}^{1}\left(R_{y, m, k}\right)=\omega^{\omega}$ and $D_{y, m, k}^{0}\left(R_{y, m, k}\right) \cap D_{y, m, k}^{1}\left(R_{y, m, k}\right)=\varnothing$.

At the same time we need to work towards a failure of Π_{3}^{1}-reduction which will be done on the even stages of the iteration. We aim to accomplish the failure of Π_{3}^{1}-reduction via exhibiting two Π_{3}^{1}-sets (lightface) B_{0} and B_{1} which are chosen in such a way that the question of whether some real x is in B_{0} or B_{1} can be changed using the coding forcings Code without interfering with the coding forcings we have to use in order to work for the $\boldsymbol{\Sigma}_{3}^{1}$-separation. This freedom will be used to define our ω_{1}-length iteration of coding forcings so that eventually B_{0} and B_{1} can not be reduced by any pair of (boldface) Π_{3}^{1}-sets, thus yielding a slightly stronger failure than just a failure of $\Pi_{3^{-}}^{1-}$ reduction.

6 The first step of the iteration

We let

$$
\vec{\varphi}:=\left(\varphi_{n}\left(v_{0}, v_{1}\right) \mid n \in \omega\right)
$$

be a fixed recursive list of the Σ_{3}^{1}-formulas in two free variables. We allow that v_{0} or v_{1} actually do not appear in some of the φ_{n} 's, so our list also contains all Σ_{3}^{1}-formulas in one free variable. We use ψ_{n} to denote $\neg \varphi_{n}$, i.e. ψ_{n} is the n-th Π_{3}^{1}-formula in the recursive list of Π_{3}^{1}-formulas induced by $\vec{\varphi}$.

We fix two Σ_{3}^{1}-formulas φ_{a}, φ_{b} which provably have non-empty intersection, e.g. $\varphi_{a}\left(v_{0}\right)=\exists v_{0}\left(v_{0}=v_{0}\right)$ and $\varphi_{b}=\exists v_{0}\left(v_{0}=v_{0} \wedge v_{0}=1\right)$. As a consequence, we need not to separate A_{a} and A_{b}, thus coding forcings of the form $\operatorname{Code}(\dot{x}, a, b, i)$ for any (name of a) real \dot{x}, for a, b our fixed natural numbers and for $i \in\{0,1\}$ can be used freely in our definition of the iteration to come.

Next we assume for notational simplicity that $\neg \varphi_{0}$ and $\neg \varphi_{1}$, i.e. the negation of the first and the negation of the second formula in our list look like this:

$$
\begin{aligned}
& \neg \varphi_{0}\left(v_{0}\right)=\psi_{0}\left(v_{0}\right)="\left(v_{0}, a, b\right) \text { is not coded into the } \vec{S}^{0} \text {-sequence" } \\
& \neg \varphi_{1}\left(v_{0}\right)=\psi_{1}\left(v_{0}\right)="\left(v_{0}, a, b\right) \text { is not coded into the } \vec{S}^{1} \text {-sequence" }
\end{aligned}
$$

The resulting sets will be defined like this:

$$
\begin{aligned}
& B_{0}=\left\{x \in \omega^{\omega} \mid \psi_{0}(x)\right\} \\
& B_{1}=\left\{x \in \omega^{\omega} \mid \psi_{1}(x)\right\}
\end{aligned}
$$

Note that for any given real $x \in \omega^{\omega}$, we can manipulate the truth value of $\psi_{0}(x)$ and $\psi_{1}(x)$ via using the coding forcings $\operatorname{Code}(x, a, b, 0)$ and $\operatorname{Code}(x, a, b, 1)$ respectively from true to false (and once false it will remain
false because of upwards absoluteness of Σ_{3}^{1}-formulas). This in particular will not interfere with the yet to be defined procedure of forming the $\alpha_{\beta^{-}}$ allowable forcings, we will need in order to force $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{1}}$-separation. Thus we gain some amount of flexibility in how we can make the sets B_{0} and B_{1} behave. We will use this to diagonalise against all possible $\boldsymbol{\Pi}_{3}^{1}$-sets B_{m}, b_{k} in such a way that none of those can reduce B_{0} and B_{1}. This ensures the failure of Π_{3}^{1}-reduction.

7 Towards Σ_{3}^{1}-separation

We are finally in the position to define the iteration which will yield a universe of $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{1}}$-separation and a failure of Π_{3}^{1}-reduction.

The iteration we are about to define inductively will be an allowable iteration, whose tails are α-allowable and α-increases along the iteration. We start with fixing a bookkeeping function

$$
F: \omega_{1} \rightarrow H\left(\omega_{1}\right)^{4}
$$

which visits every element cofinally often. The role of F is to list all the quadruples of the form (\dot{x}, \dot{y}, m, k), where \dot{x}, \dot{y} are names of reals in the forcing we already defined, and m and k are natural numbers which represent Σ_{3}^{1}-formulas or Π_{3}^{1}-formulas with two free variables, cofinally often. Assume that we are at stage $\beta<\omega_{1}$ of our iteration. By induction we will have constructed already the following list of objects.

- An ordinal $\alpha_{\beta} \leqslant \beta$ and a set $E_{\alpha_{\beta}}=E_{\alpha_{\beta}}^{0} \cup E_{\alpha_{\beta}}^{1}$ which is of the form $\left\{\dot{y}_{\eta}, m_{\eta}, k_{\eta}: \eta<\alpha_{\beta}\right\} \cup\left\{\left(\dot{x}_{\eta}, i_{\eta}\right): \eta<\alpha_{\beta}\right\}$, where $\dot{y}_{\eta}, \dot{x}_{\eta}$ are $\mathbb{P}_{\beta^{-}}$ names of a reals, m_{η}, k_{η} are natural numbers and $i_{\eta} \in\{0,1\}$. As a consequence, for every bookkeeping function F^{\prime}, we do have a notion of η-allowable relative to E and F^{\prime} over $W\left[G_{\beta}\right]$.
- We assume by induction that for every $\eta<\alpha_{\beta}$, if $\beta_{\eta}<\beta$ is the η-th stage in \mathbb{P}_{β}, where we add a new member to $E_{\alpha_{\beta}}$, then $W\left[G_{\beta_{\eta}}\right]$ thinks that the $\mathbb{P}_{\beta_{\eta} \beta}$ is η-allowable with respect to $E_{\alpha_{\beta}} \upharpoonright \eta$.
- If $\left(\dot{y}_{\eta}, m_{\eta}, k_{\eta}\right) \in E_{\alpha_{\beta}}$, then we set again β_{η} to be the η-th stage in \mathbb{P}_{β} such that a new member to $E_{\alpha_{\beta}}$ is added. In the model $W\left[G_{\beta_{\eta}}\right]$, we can form the set of reals R_{η} which were added so far by the use of a coding forcing in the iteration up to stage β_{η}, and which witness $(* * *)$ holds for some (x, y, m, k);
Note that R_{η} is a countable set of reals and can therefore be identified with a real itself, which we will do. The real R_{η} is an error term and indicates the set of coding areas we must avoid when expecting correct codes, at least for the codes which contain \dot{y}_{η}, m_{η} and k_{η}.

Assume that β is odd, $F(\beta)=(\dot{x}, \dot{y}, m, k)$, assume that \dot{x}, \dot{y} are \mathbb{P}_{β}-names for reals, and $m, k \in \omega$ correspond to the Σ_{3}^{1}-formulas $\varphi_{m}\left(v_{0}, v_{1}\right)$ and $\varphi_{k}\left(v_{0}, v_{1}\right)$. Assume that G_{β} is a \mathbb{P}_{β}-generic filter over W. Let $\dot{x}^{G_{\beta}}=x$ and $\dot{y}_{1}^{G_{\beta}}=$ $y_{1}, \dot{y}_{2}^{G_{\alpha}}=y_{2}$. We turn to the forcing $\mathbb{P}(\beta)$ we want to define at stage β in our iteration. Again we distinguish several cases.
(A) Assume that $W\left[G_{\beta}\right]$ thinks that there is an α_{β}-allowable forcing \mathbb{Q} relative to $E_{\alpha_{\beta}}$ and some F^{\prime} such that

$$
\mathbb{Q} \Vdash \exists z\left(z \in A_{m}(y) \cap A_{k}(y)\right) .
$$

Then we pick the <-least such forcing, where $<$ is some previously fixed wellorder. We denote this forcing with \mathbb{Q}_{1} and use

$$
\mathbb{P}(\beta):=\mathbb{Q}_{1} .
$$

We do not change R_{β} at such a stage.
(B) Assume that (A) is not true.
(i) Assume however that there is an α_{β}-allowable forcing \mathbb{Q} in $W\left[G_{\beta}\right]$ with respect to $E_{\alpha_{\beta}}$ such that

$$
\mathbb{Q} \Vdash x \in A_{m}(y) .
$$

Then we set

$$
\dot{\mathbb{Q}}_{\beta}=\mathbb{P}(\beta):=\operatorname{Code}(x, y, m, k, 0) .
$$

In that situation, we enlarge the E-set as follows. We let $(\dot{y}, m, k)=$: $\left(\dot{y}_{\alpha_{\beta}}, m_{\alpha_{\beta}}, k_{\alpha_{\beta}}\right)$ and

$$
E_{\alpha_{\beta}+1}:=E_{\alpha_{\beta}} \cup\{(\dot{y}, m, k)\} .
$$

Further, if we let r_{η} be the real which is added by $\operatorname{Code}((x, y, m, k), 0)$ at stage η of the iteration which witnesses $(* * *)$ of some quadruple $\left(x_{\eta}, y_{\eta}, m_{\eta}, k_{\eta}\right)$. Then we collect all the countably many such reals we have generically added so far in our iteration up to stage β and put them into one set R and let

$$
R_{\alpha_{\beta}+1}:=R
$$

(ii) Assume that (i) is wrong, but there is an α_{β}-allowable forcing \mathbb{Q} with respect to $E_{\alpha_{\beta}}$ in $W\left[G_{\beta}\right]$ such that

$$
\mathbb{Q} \Vdash x \in A_{k}(y) .
$$

Then we set

$$
\mathbb{P}(\beta):=\operatorname{Code}(x, y, m, k, 1)
$$

In that situation, we enlarge the E-set as follows. We let the new E value ($\dot{y}_{\alpha_{\beta}}, m_{\alpha_{\beta}}, k_{\alpha_{\beta}}$) be (\dot{y}, m, k) and

$$
E_{\alpha_{\beta}+1}:=E_{\alpha_{\beta}} \cup\{(\dot{y}, m, k)\} .
$$

Further, if we let r_{η} be the real which is added by $\operatorname{Code}(x, y, m, k, i), i \in$ $\{0,1\}$ at stage η of the iteration which witnesses ($* * *$) of some quadruple $\left(x_{\eta}, y_{\eta}, m_{\eta}, k_{\eta}\right)$. Then we collect all the countably many such reals we have added so far in our iteration up to stage β and put them into one set R and let

$$
R_{\alpha_{\beta}+1}:=R
$$

(iii) If neither (i) nor (ii) is true, then there is no α_{β}-allowable forcing \mathbb{Q} with respect to $E_{\alpha_{\beta}}$ which forces $x \in A_{m}(y)$ or $x \in A_{k}(y)$, and we set

$$
\mathbb{P}(\beta):=\operatorname{Code}((x, y, m, k), 1)
$$

Further, if we let r_{η} be the real which is added by $\operatorname{Code}((x, y, m, k), 1)$ at stage η of the iteration which witnesses $(* * *)$ of some quadruple $\left(x_{\eta}, y_{\eta}, m_{\eta}, k_{\eta}\right)$. Then we collect all the countably many such reals we have added so far in our iteration up to stage β and put them into one set R and let

$$
R_{\alpha_{\beta}+1}:=R
$$

Otherwise we force with the trivial forcing.

8 Towards a failure of Π_{3}^{1}-reduction

Assume that $\beta<\omega_{1}$ is an even stage of our iteration. Our induction hypothesis includes that we have created already the iteration \mathbb{P}_{β} up to stage β, and that we defined the notion of α_{β}-allowable forcings for an ordinal $\alpha_{\beta}<\omega_{1}$. Assume that $F(\beta)=(m, k, \dot{y})$, where $m, k \in \omega$ and \dot{y} is the \mathbb{P}_{β}-name of a real number. We consider the following cases:

8.1 Case 1

We first assume that, working over $L\left[G_{\beta}\right]$, there is a further α_{β}-allowable forcing $\mathbb{P} \in L\left[G_{\beta}\right]$ such that \mathbb{P} adds two reals x_{0} and x_{1} and such that for a \mathbb{P}-generic filter G over $L\left[G_{\beta}\right], L\left[G_{\beta}\right][G]$ satisfies:

1. $x_{0} \in B_{m} \backslash B_{k}$ and $\left(x_{0}, y, a, b\right)$ is neither coded into \vec{S}^{0} nor \vec{S}^{1}.
2. $x_{1} \in B_{k} \backslash B_{m}$ and $\left(x_{1}, y, a, b\right)$ is neither coded into \vec{S}^{0} nor \vec{S}^{1}.

In that situation we first use the $<_{L}$-least \mathbb{P}_{β}-name of such a forcing \mathbb{P} to add the reals x_{0} and x_{1}. After forcing with \mathbb{P} we code x_{0} and x_{1} both into \vec{S}^{1} via forcing with $\operatorname{Code}\left(x_{0}, a, b, 1\right) \times \operatorname{Code}\left(x_{1}, a, b, 1\right)$. The forcing

$$
\mathbb{P} *\left(\operatorname{Code}\left(x_{0}, a, b, 1\right) \times \operatorname{Code}\left(x_{1}, a, b, 1\right)\right)=: \mathbb{P}(\beta)=\dot{\mathbb{Q}}_{\beta}
$$

is the forcing we use at stage β in the situation of case 1 . We also change the notion of α_{β}-allowable to $\alpha_{\beta}+1$-allowable which is defined to be $\alpha_{\beta^{-}}$allowable together with the additional demand to neither use the forcing $\operatorname{Code}\left(x_{0}, a, b, 0\right)$ nor $\operatorname{Code}\left(x_{1}, a, b, 0\right)$. In other words we let $E_{\alpha_{\beta}+1}:=E_{\alpha_{\beta}} \cup$ $\left\{\left(x_{0}, 0\right),\left(x_{1}, 0\right)\right\}$. Note that this choice ensures that x_{0} and x_{1} will both be elements of B_{0} in all outer $\alpha_{\beta}+1$-allowable extensions.

Note that the choice of $\mathbb{P}(\beta)=\dot{\mathbb{Q}}_{\beta}$ and $\alpha_{\beta}+1$-allowability already ensures that $B_{m}(y), B_{k}(y)$ can not reduce B_{0} and B_{1} in all possible $\alpha_{\beta}+1$-generic extensions of $L\left[G_{\beta+1}\right]$.

Lemma 8.1. The sets $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1} in all outer models of $L\left[G_{\beta+1}\right]$ which are obtained by a further $\alpha_{\beta}+1$-allowable forcing.

Proof. Indeed, we shall consider three subcases to see this. We work in $M \supset L\left[G_{\beta+1}\right]$ where M is an outer model obtained by a further $\alpha_{\beta}+1$ allowable forcing.

Case 1a: First we assume that $x_{0} \in B_{m} \backslash B_{k}$ and $x_{1} \in B_{k} \backslash B_{m}$ still holds in M. In this situation neither $B_{m} \subset B_{1}$ nor $B_{k} \subset B_{1}$ can hold as witnessed by x_{0} and x_{1}. In particular, $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1}. Note that this will remain true in all further outer models obtained by an additional $\alpha_{\beta}+1$-allowable forcing as long as $x_{0} \in B_{m} \backslash B_{k}$ and $x_{1} \in B_{k} \backslash B_{m}$. If x_{i} will drop out of B_{m} or B_{k} in some $\alpha_{\beta}+1$-allowable extension, then case 1 b and case 1 c will apply.

Case 1b: We assume that $x_{0} \in B_{m} \backslash B_{k}$ but $x_{1} \notin B_{m} \cup B_{k}$ holds in M. In this situation we can not have $B_{0} \cup B_{1}=B_{m} \cup B_{k}$ as $x_{1} \in B_{0}$ and $x_{1} \notin B_{m} \cup B_{k}$. Note that $x_{1} \in B_{0}$ will remain true in outer $\alpha_{\beta}+1$ allowable models, as we settled to never use $\operatorname{Code}\left(x_{1}, y, a, b, 0\right)$ and $x_{1} \notin B_{m} \cup B_{k}$ by the upwards absoluteness of the Σ_{3}^{1}-formulas $\neg \psi_{m}$ and $\neg \psi_{k}$. As a consequence, $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1} in all outer $\alpha_{\beta}+1$-allowable models M.

Case 1c: In the dual case we assume that $x_{1} \in B_{m}(y) \backslash B_{k}(y)$ but $x_{0} \notin B_{m}(y) \cup$ $B_{k}(y)$ holds in M to derive, as above, that $B_{0} \cup B_{1} \neq B_{m}(y) \cup B_{k}(y)$.

Case 1d: If x_{0} and x_{1} are both not in $B_{m}(y)$ and $B_{k}(y)$, then again $B_{m}(y) \cup$ $B_{k}(y) \neq B_{0} \cup B_{1}$.

To summarize: In the described case 1, we defined an α_{β}-allowable forcing $\dot{\mathbb{Q}}_{\beta}$ and the notion of $\alpha_{\beta}+1$-allowable forcings, such that α_{β}-allowable forcings are also $\alpha_{\beta}+1$-allowable (but not vice versa). Additionally in all further $\alpha_{\beta}+1$-allowable generic extensions of $L\left[G_{\beta+1}\right]$, the sets $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1}.

8.2 Case 2

In the second case, we assume that case 1 does not apply. As a consequence, whenever we work over $L\left[G_{\beta}\right]$ and apply a further α_{β}-allowable forcing \mathbb{P} which adds two reals $x_{0} \neq x_{1}$ and does neither have $\operatorname{Code}\left(x_{0}, a, b, i\right)$ nor Code $\left(x_{1}, a, b, i\right)$ as a factor for $i \in\{0,1\}$, then x_{0}, x_{1} will not satisfy that $x_{0} \in B_{m}(y) \backslash B_{k}(y)$ and $x_{1} \in B_{k}(y) \backslash B_{m}(y)$.

Again, we shall split into subcases:
Case 2a: There is an α_{β}-allowable \mathbb{P} and a $G \subset \mathbb{P}$ such that in $L\left[G_{\beta}\right][G]$ there are $x_{0} \neq x_{1}$ such that $x_{0}, x_{1} \in B_{m} \backslash B_{k}$. In this situation, we force over $L\left[G_{\beta}\right][G]$ with $\operatorname{Code}\left(x_{0}, a, b, 1\right) \times \operatorname{Code}\left(x_{1}, a, b, 0\right)$. Let $H_{0} \times H_{1} \subset$ $\operatorname{Code}\left(x_{0}, a, b, 1\right) \times \operatorname{Code}\left(x_{1}, a, b, 0\right)$ be a $L\left[G_{\beta}\right][G]$-generic filter; and define $G_{\beta+1}:=G_{\beta} * G *\left(H_{0} \times H_{1}\right)$. We also define $\alpha_{\beta}+1$-allowable as being α_{β}-allowable with the additional rule that $\operatorname{Code}\left(x_{0}, a, b, 0\right)$ and $\operatorname{Code}\left(x_{1}, a, b, 1\right)$ will not be used anymore as factors. (Note that as a consequence of this $x_{0} \in B_{0}$ and $x_{1} \in B_{1}$ will remain true in all $\alpha_{\beta}+1$-allowable generic extensions of $L\left[G_{\beta+1}\right]$). That is, we define $E_{\alpha_{\beta}+1}:=E_{\alpha_{\beta}} \cup\left\{\left(x_{0}, 0\right),\left(x_{1}, 1\right)\right\}$. Then we argue as follows:

Lemma 8.2. Let M be an outer model of $L\left[G_{\beta+1}\right]$ obtained via an $\alpha_{\beta}+1$-allowable forcing. Then $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1} over M.

Proof. We split into several cases. Assume first that in $M \supset L\left[G_{\beta+1}\right]$, $x_{0}, x_{1} \in B_{m}(y)$ still holds true. Then, as $x_{0} \in B_{0} \backslash B_{1}$ and $x_{1} \in B_{1} \backslash B_{0}$, the set $B_{m}(y)$ can neither reduce B_{0} nor B_{1}. Indeed x_{0} witnesses that $B_{m}(y)$ is not a subset of B_{1} and x_{1} witnesses that $B_{m}(y)$ is not a subset of B_{0}. If, in a further $\alpha_{\beta}+1$-allowable extension of $M \supset L\left[G_{\beta+1}\right]$, $x_{0} \notin B_{m}(y)$ or $x_{1} \notin B_{m}(y)$ then this will be dealt with in the next subcases.
If in $M \supset L\left[G_{\beta+1}\right], x_{0} \notin B_{m}(y)$, yet $x_{1} \in B_{m}(y)$ then $x_{0} \notin B_{m}(y) \cup$ $B_{k}(y)$ and $x_{0} \in B_{0}$ in all $\alpha_{\beta}+1$-allowable generic extensions of M. So $B_{m}(y) \cup B_{k}(y) \neq B_{0} \cup B_{1}$ and $B_{m}(y), B_{k}(y)$ can not reduce B_{0}, B_{1}. The same argument works if $x_{1} \notin B_{m}(y)$ and $x_{0} \in B_{m}(y)$.
If in $M, x_{0}, x_{1} \notin B_{m}(y)$ anymore, then again $B_{m}(y), B_{k}(y)$ can not reduce B_{0}, B_{1}.

Case 2b: The dual situation in which we can force $x_{0} \neq x_{1}$ such that $x_{0}, x_{1} \in$ $B_{k}(y) \backslash B_{m}(y)$ is dealt with in the analogous way.

Case 2c: If neither 2a nor 2 b are true, then one can not force two distinct reals x_{0}, x_{1} into $B_{m}(y) \backslash B_{k}(y)$ with α_{β}-allowable forcings which do not contain $\operatorname{Code}\left(x_{0}, a, b, i\right)$ or $\operatorname{Code}\left(x_{1}, a, b, i\right)$ for $i \in\{0,1\}$. And the same holds true for $B_{k}(y) \backslash B_{m}(y)$. But it is straightforward to use an α_{β}-allowable forcing \mathbb{P} over $L\left[G_{\beta}\right]$ which will add \aleph_{1}-many new reals $\left(z_{i} \mid i<\omega_{1}\right)$ and neither $\operatorname{Code}\left(z_{i}, a, b, 0\right)$ nor $\operatorname{Code}\left(z_{i}, a, b, 1\right)$ is a factor of \mathbb{P}. We force with such a \mathbb{P}, let $G \subset \mathbb{P}$ be generic over $L\left[G_{\beta}\right]$ and let $L\left[G_{\beta+1}\right]=L\left[G_{\beta}\right][G]$. We set $\alpha_{\beta}+1$-allowable forcing to be $\alpha_{\beta^{-}}$ allowable with the additional constraint that neither $\operatorname{Code}\left(z_{i}, a, b, 0\right)$ nor $\operatorname{Code}\left(z_{i}, a, b, 1\right)$ must be used.

Lemma 8.3. If M is an outer model of $L\left[G_{\beta+1}\right]$, obtained with a further $\alpha_{\beta}+1$-allowable forcing. Then $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0}, B_{1}.

Proof. For every $\alpha_{\beta}+1$-allowable extension M of $L\left[G_{\beta+1}\right], \forall i<\omega_{1}\left(z_{i} \in\right.$ $B_{0} \cup B_{1}$) must hold in M, yet for any pair $z_{i} \neq z_{j}, M \models z_{i}, z_{j} \in$ $B_{m}(y) \cap B_{k}(y)$ or $M \models z_{i}, z_{j} \notin\left(B_{m}(y) \cup B_{k}(y)\right)$. In both cases, z_{i}, z_{j} witness that $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0}, B_{1} over M.

To summarize: in both cases we defined an extension $L\left[G_{\beta+1}\right]$ of $L\left[G_{\beta}\right]$, and the notion of $\alpha_{\beta}+1$-allowable forcings. Additionally we found reals which witness that $B_{m}(y)$ and $B_{k}(y)$ can not reduce B_{0} and B_{1} in all further outer models M of $L\left[G_{\beta+1}\right]$ which are obtained with a further $\alpha_{\beta}+1$-allowable forcing.

At limit stages β, we use the mixed support to define the limit partial order \mathbb{P}_{β} and set $E_{\alpha_{\beta}}=\bigcup_{\eta<\beta} E_{\alpha_{\eta}}$. This ends the definition of $\mathbb{P}_{\omega_{1}}$.

9 Discussion of the resulting universe

We let $G_{\omega_{1}}$ be a $\mathbb{P}_{\omega_{1}}$-generic filter over W. As $W\left[G_{\omega_{1}}\right]$ is a proper extension of W, ω_{1} is preserved. Moreover CH remains true.

A second observation is that for every stage β of our iteration and every $\eta>\beta$, the intermediate forcing $\mathbb{P}_{[\beta, \eta)}$, defined as the factor forcing of \mathbb{P}_{β} and \mathbb{P}_{η}, is always an α_{β}-allowable forcing relative to $E_{\alpha_{\beta}}$ and some bookkeeping. This is clear as by the definition of the iteration, we force at every stage
β with a α_{β}-allowable forcing relative to $E_{\alpha_{\beta}}$ and α_{β}-allowable becomes a stronger notion as we increase α_{β}.

A third observation is, that B_{0} and B_{1} can not be reduced by any pair of boldface Π_{3}^{1}-sets $B_{m}(y), B_{k}(y)$. This follows immediately from the definition and the discussion of the iteration on even stages. Indeed if $B_{m}(y)$ and $B_{k}(y)$ are arbitrary Π_{3}^{1}-sets, then, if \dot{y} is some nice name of y, the triple (m, k, \dot{y}) will be guessed by the bookkeeping function cofinally often on the even stages. But on the first stage β where it is guessed, we ensured that B_{0} and B_{1} can not be reduced by $B_{m}(y)$ and $B_{k}(y)$. And this remains true for all further $\alpha_{\beta}+1$-allowable extensions of $L\left[G_{\beta+1}\right]$. As $L\left[G_{\omega_{1}}\right]$ is an $\alpha_{\beta}+1$-allowable extension of $L\left[G_{\beta+1}\right]$, the assertion follows.

We still need to show that in $L\left[G_{\omega_{1}}\right]$ the $\boldsymbol{\Sigma}_{3}^{1}$-separation property is true. For a pair of disjoint $\Sigma_{3}^{1}(y)$-sets, $A_{m}(y)$ and $A_{k}(y)$, we consider the least stage β such that there is a \mathbb{P}_{β}-name \dot{z} such that $\dot{z}^{G_{\beta}}=z$ and (z, y, m, k) are considered by F at stage β. We consider the real $R_{\alpha_{\beta}}$ which codes up all the reals which witness an instance of ($* * *$) for some quadruple ($x^{\prime}, y^{\prime}, m^{\prime}, k^{\prime}$). This real $R_{\alpha_{\beta}}$ contains the information for all coding areas and quadruples $\left(x^{\prime}, y^{\prime}, m^{\prime}, k^{\prime}\right)$ we have coded up so far into \vec{S} in our iteration. As mentioned already, the role of $R_{\alpha_{\beta}}$ is that of an error term. We might have added false patterns in our iteration so far, but these false patterns will appear in a coded form in $R_{\alpha_{\beta}}$. Our definitions will ensure that for the pair $A_{m}(y)$ and $A_{k}(y)$, modulo $R_{\alpha_{\beta}}$, the set of reals x for which the quadruple (x, y, m, k) is coded into \vec{S}^{0}, and the set of reals x, for which the quadruple (x, y, m, k) is coded into \vec{S}^{1} will separate $A_{m}(y)$ and $A_{k}(y)$:
$x \in D_{y, m, k}^{0}\left(R_{\alpha_{\beta}}\right) \Leftrightarrow \exists r\left(L\left[r, R_{\alpha_{\beta}}\right] \models(x, y, m, k)\right.$ can be read off from a code written on an ω_{1}-many ω-blocks of elements of $\overrightarrow{S^{0}}$ and the coding area of (x, y, m, k) is almost disjoint from each coding area in $R_{\alpha_{\beta}}$).
and

$$
\begin{array}{rl}
x \in D_{y, m, k}^{1}\left(R_{\alpha_{\beta}}\right) \Leftrightarrow \exists r & L\left[r, R_{\alpha_{\beta}}\right] \models(x, y, m, k) \text { can be read off from a code } \\
& \text { } r \text { ritten on an } \omega_{1} \text {-many } \omega \text {-blocks of elements of } \\
& \overrightarrow{S^{1}} \text { and the coding area of }(x, y, m, k) \\
& \text { is almost disjoint from each coding area in } \left.R_{\alpha_{\beta}}\right) .
\end{array}
$$

It follows from the definition of the iteration that for any real parameter y and any $m, k \in \omega, D_{y, m, k}^{0}\left(R_{\alpha_{\beta}}\right) \cup D_{y, m, k}^{1}\left(R_{\alpha_{\beta}}\right)=\omega^{\omega}$. Indeed, as our bookkeeping function visits each name of a real in our iteration \aleph_{1}-many times, it will list each real $x \in W\left[G_{\omega_{1}}\right]$ unboundedly often below ω_{1}. Thus (x, y, m, k) will be coded into \vec{S}^{0} or \vec{S}^{1} at stages $\beta^{\prime}>\beta$, which gives that
$D_{y, m, k}^{0}\left(R_{\alpha_{\beta}}\right) \cup D_{y, m, k}^{1}\left(R_{\alpha_{\beta}}\right)=\omega^{\omega}$ The next lemma establishes that the sets are indeed separating.

Lemma 9.1. In $W\left[G_{\omega_{1}}\right]$, let y be a real and let $m, k \in \omega$ be such that $A_{m}(y) \cap A_{k}(y)=\varnothing$. Then there is an real R such that the sets $D_{y, m, k}^{0}(R)$ and $D_{y, m, k}^{1}(R)$ partition the reals.

Proof. Let β be the least stage such that there is a real x such that $F(\beta)=$ (\dot{x}, \dot{y}, m, k) with $\dot{x}_{\beta}^{G}=x, \dot{y}_{\beta}^{G}=y$. Let R be $R_{\alpha_{\beta}}$ for $R_{\alpha_{\beta}}$ being defined as above. Then, as $A_{m}(y)$ and $A_{k}(y)$ are disjoint in $W\left[G_{\omega_{1}}\right]$, by the rules of the iteration, case B must apply at β.

Assume now for a contradiction, that $D_{y, m, k}^{0}(R)$ and $D_{y, m, k}^{1}(R)$ do have non-empty intersection in $W\left[G_{\omega_{1}}\right]$. Let $z \in D_{y, m, k}^{0}(R) \cap D_{y, m, k}^{1}(R)$ and let $\gamma>\beta$ be the first stage of the iteration which sees that z is in the intersection. Then, by the rules of the iteration and without loss of generality, we must have used case $\mathrm{B}(\mathrm{i})$ at the first stage $\delta \geqslant \beta$ of the iteration where (z, y, m, k) is listed by the bookkeeping F, and case $\mathrm{B}(\mathrm{ii})$ at stage γ. But this would imply, that at stage δ, there is an α_{δ}-allowable forcing \mathbb{Q}_{δ} with respect to $E_{\alpha_{\delta}}$, which forces $z \in A_{m}(y)$, yet at stage $\gamma>\delta$, there is an α_{γ}-allowable forcing which forces $z \in A_{k}(y)$. As $\gamma>\delta$, the α_{γ}-allowable forcing \mathbb{Q}_{γ} which witnesses that we are in case B (ii) at stage γ in our iteration, is also α_{δ}-allowable. But this means that, over $W\left[G_{\delta}\right]$, the intermediate forcing $\mathbb{P}_{\delta, \gamma}$, which is also α_{δ}-allowable can be extended to the α_{δ}-allowable forcing which first uses $\mathbb{P}_{\delta, \gamma}$ and then $\mathbb{Q}_{\gamma}\left(\right.$ denotes by $\left.\mathbb{P}_{\delta, \gamma} \frown \mathbb{Q}_{\gamma}\right)$, as it is, very strictly speaking not an iteration but a hybrid of an iteration and a product)) yielding an α_{δ}-allowable forcing which forces $z \in A_{k}(y)$.

On the other hand, in $W\left[G_{\delta}\right]$ we do have \mathbb{Q}_{δ} which forces $z \in A_{m}(y)$, as we assumed that at stage δ we are in case $\mathrm{B}(\mathrm{i})$. Now the product $\mathbb{Q}_{\delta} \times$ $\left(\mathbb{P}_{\delta, \gamma} \subset \mathbb{Q}_{\gamma}\right)$ is α_{δ}-allowable, and by upwards absoluteness of Σ_{3}^{1}-formulas we get that

$$
\mathbb{Q}_{\delta} \times\left(\mathbb{P}_{\delta, \gamma} \frown \mathbb{Q}_{\gamma}\right) \Vdash z \in A_{m}(y) \cap A_{k}(y) .
$$

But this would mean that at stage δ, we are in case A in the definition of our iteration, which is a contradiction.

Lemma 9.2. In $W\left[G_{\omega_{1}}\right]$, for every pair m, k and every parameter $y \in \omega^{\omega}$ such that $A_{m}(y) \cap A_{k}(y)=\varnothing$ there is a real R such that

$$
A_{m}(y) \subset D_{y, m, k}^{0}(R) \wedge A_{k}(y) \subset D_{y, m, k}^{1}(R)
$$

Proof. The proof is by contradiction. Assume that m, k and y are such that for every real R there is z such that $z \in A_{m}(y) \cap D_{y, m, k}^{1}(R)$ or $z \in A_{k}(y) \cap$ $D_{y, m, k}^{1}(R)$. We consider the smallest ordinal $\beta<\omega_{1}$ such that $F(\beta)$ lists a quadruple of the form (x, y, m, k) for which $W\left[G_{\omega_{1}}\right] \models x \in A_{m}(y) \cap D_{y, m, k}^{1}$
and let $R=R_{\alpha_{\beta}}$. As $A_{m}(y)$ and $A_{k}(y)$ are disjoint we know that at stage β we were in case B. As x is coded into $\overrightarrow{S^{1}}$ after stage β and by the last Lemma, Case $\mathrm{B}(\mathrm{i})$ is impossible at β. Hence, without loss of generality we may assume that case $\mathrm{B}(\mathrm{ii})$ applies at β. As a consequence, there is a forcing $\mathbb{Q}_{2} \in W\left[G_{\beta}\right]$ which is α_{β}-allowable with respect to $E_{\alpha_{\beta}}$ which forces $\mathbb{Q}_{2} \Vdash x \in A_{k}(y)$. Note that in that case we collect all the reals which witness (***) for some quadruple to form the set $R_{\alpha_{\beta}}$.

As $x \in A_{m}(y) \cap D_{y, m, k}^{1}(R)$, we let $\beta^{\prime}>\beta$ be the first stage such that $W\left[G_{\beta^{\prime}}\right] \vDash x \in A_{m}(y)$. By Lemma 4.1, $W\left[G_{\beta}\right]$ thinks that $\mathbb{Q}_{2} \times \mathbb{P}_{\beta \beta^{\prime}}$ is α_{β}-allowable with respect to $E_{\alpha_{\beta}}$, yet $\mathbb{Q}_{2} \times \mathbb{P}_{\beta \beta^{\prime}} \Vdash x \in A_{m}(y) \cap A_{k}(y)$. Thus, at stage β, we must have been in case A. This is a contradiction.

The next lemma will finish the proof of our theorem:
Lemma 9.3. In $W\left[G_{\omega_{1}}\right]$, if $y \in \omega^{\omega}$ is an arbitrary parameter, R a real and m, k natural numbers, then the sets $D_{y, m, k}^{0}(R)$ and $D_{y, m, k}^{1}(R)$ are $\Sigma_{3}^{1}(R)$ definable.

Proof. The proof is a standard calculation using the obvious modification of (***) employing R as the set which codes the coding areas a real must avoid to be in $D_{y, m, k}^{0}(R)$ or $D_{y, m, k}^{1}(R)$.

10 Lifting to M_{n}

The ideas presented can be used to construct a universe in which $\boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{3}^{-}}^{1}$ separation can be separated from Π_{n+3}^{1}-reduction. Its proof is a direct application of the ideas from [7] which can be used to translate the argument for the third level of the projective hierarchy to M_{n}. As there are no new ideas needed, and the translation works in a very similar manner to [7], we will not go into any details.

11 Open questions

We end with several questions which are related to this article.
Question 1. Does there exist a universe in which $\boldsymbol{\Sigma}_{3}^{1}$-separation holds, but Π_{n}^{1}-reduction fails for any $n \geqslant 3$?

Note for this question that in our construction of the failure of $\Pi_{3^{-}}^{1}$ reduction, we used Shoenfield absoluteness, or rather the upwards absoluteness of Σ_{3}^{1}-formulas, several times. Thus a failure of Π_{n}^{1}-reduction would need new ideas and arguments.

Question 2. Can one force a universe of $\boldsymbol{\Sigma}_{4}^{1}$-separation in which Π_{4}^{1}-reduction fails over just L?

By a classical result of Novikov, for any projective pointclass Γ, it is impossible to have Γ and $\check{\Gamma}$-reduction simultaneously. The case for separation is still unknown.

Question 3. Can one force a universe where Σ_{3}^{1} - and Π_{3}^{1}-separation hold simultaneously?

References

[1] J. Addison Some consequences of the axiom of constructibility, Fundamenta Mathematica, vol. 46 (1959), pp. 337-357.
[2] R. David A very absolute Π_{2}^{1}-real singleton. Annals of Mathematical Logic 23, pp. 101-120, 1982.
[3] S. D. Friedman and D. Schrittesser Projective Measure without Projective Baire. Memoirs of the American Mathematical Society vol. 267, 1298. 2020.
[4] S. Hoffelner $N S_{\omega_{1}} \Delta_{1}$-definable and saturated. Journal of Symbolic Logic 86 (1), pp. $25-59,2021$.
[5] S. Hoffelner Forcing the Σ_{3}^{1}-separation property. Journal of Mathematical Logic 22, No. 2, 2022.
[6] S. Hoffelner Forcing the Π_{3}^{1}-reduction property and a failure of Π_{3}^{1} uniformization property, Annals of Pure and Applied Logic, Volume 174, Issue 8, 2023.
[7] S. Hoffelner Forcing the Π_{n}^{1}-uniformization property, submitted. Prerprint available Arxiv.
[8] R. Jensen and R. Solovay Some Applications of Almost Disjoint Sets. Studies in Logic and the Foundations of Mathematics Volume 59, pp. 84-104, 1970.
[9] V. Kanovei and V. Lyubetsky On Harrington's model in which Separation holds but Reduction fails at the 3rd projective level, and on some related models of Sami, Arxiv.
[10] S. Müller, R. D. Schindler and W. H. Woodin Mice with finitely many Woodin cardinals from optimal determinacy hypotheses, Journal of Mathematical Logic, vol. 20, 2020.
[11] D. Martin and J. Steel A Proof of Projective Determinacy. Journal of the American Mathematical Society (2), pp.71-125, 1989.
[12] Y. Moschovakis Descriptive Set Theory. Mathematical Surveys and Monographs 155, AMS
[13] Y. Moschovakis Uniformization in a playful Universe. Bulletin of the American Mathematical Society 77, no. 5, 731-736, 1971.
[14] R. Sami Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.

[^0]: *Supported by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germanys Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics-Geometry-Structure.

[^1]: ${ }^{1}$ see [2] for the original argument, where the strings in Jensen's coding machinery are altered such that certain unwanted universes are destroyed. This destruction is emulated in our context as seen below.

