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Abstract

We show that one can force over L that Σ1
3-separation holds, while

Π1
3-reduction fails, thus separating these two principles for the first

time. The construction can be lifted to canonical inner models Mn

with n-many Woodin cardinals, yielding that assuming the existence
of Mn, Σ1

n`3-separation can hold, yet Π1
n`3-reduction fails.

1 Introduction

Descriptive Set Theory serves as a fundamental framework for investigating
the structure and properties of sets of real numbers. Two central concepts
within this theory, the Separation Property, introduced in the early 1920’s
and the Reduction Property, introduced by Kuratowski in the mid 1930’s,
have garnered significant attention due to their profound implications for
properties of projective subsets of the real numbers.

Definition 1.1. We say that a projective pointclass Γ P tΣ1
n | n P ωuYtΠ

1
n |

n P ωu has the separation property (or just separation) iff every pair A0 and
A1 of disjoint elements of Γ has a separating set C, i.e. a set C such that
A0 Ă C and A1 Ă ωωzC and such that C P ΓX Γ̌, where Γ̌ denotes the dual
pointclass of Γ.

Definition 1.2. We say that a projective pointclass Γ P tΣ1
n | n P ωuYtΠ

1
n |

n P ωu satisfies the Γ-reduction property (or just reduction) if every pair
B0, B1 of Γ-subsets of the reals can be reduced by a pair of Γ-sets R0, R1,
which means that R0 Ă B0, R1 Ă B1, R0XR1 “ H and R0YR1 “ B0YB1.
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It follows immediately from the definitions that Γ-reduction implies Γ̌-
separation. It is very natural to ask whether the reverse direction is also
true.

Since their introduction, many results have been proved which shed light
on how separation and reduction can behave among the projective point-
classes. These results can be obtained using two very different set theoretic
assumptions, which draw very different scenarios of the properties of sepa-
ration and reduction.

The first assumption is V “ L, or rather the existence of a Σ1
2-definable,

good projective well-order of the reals. Recall that a good Σ1
2-definable well-

order is a Σ1
2-well-order with the additional property that also the relation

InSegpx, yq :ô tpxqi | i P ωu “ tz | z ăL yu is Σ1
2, where pxqi denotes some

recursive decoding of x into ω-many reals, pxqi being the i-th real decoded
out of r. By results of J. Addison ([1]) the existence of a good Σ1

n-wellorder
implies Π1

m-uniformization for every m ě n. As Π1
m-uniformization implies

Π1
m reduction, the assumption of V “ L implies that for every n ě 1, Σ1

n-
reduction and Π1

n-separation is true (the case n “ 1 follows from Kondo’s
theorem that Π1

1-uniformization is true).
The second assumption which settles the behaviour of reduction and

separation on the projective hierarchy is projective determinacy (PD). By
the results of Y. Moschovakis ([13]), under PD, for every n P ω, Π1

2n`1 and
Σ1
2n`2 sets have the scale property, which in particular implies that Π1

2n`1

and Σ1
2n`2 sets have the uniformization property and so Π1

2n`1 and Σ1
2n`2

reduction is true. By the famous theorems of D. Martin and J. Steel (see [11])
on the one hand, and H. Woodin (see [10]) on the other hand, determinacy
assumptions on projective sets and large cardinal assumptions are two sides
of the very same coin.

Note that under V “ L and also under PD, Γ separation holds because
already the stronger Γ̌-reduction (in fact Γ̌-uniformization) holds. So these
results do not shed light on the question stated above, whether Γ-separation
and Γ̌-reduction are different properties at all. A partial answer to the
question was first given by R. Sami in his PhD thesis from 1976 [14]). In it
he showed (among other interesting results) that after adding a single Cohen
real to L, the resulting universe will satisfy that Π1

3-separation holds, yet Σ1
3-

reduction fails. And additionally Σ1
n-reduction holds again for n ě 4. His

results inspired L. Harrington to produce a model in which Π1
3-separation

holds but there is a (lightface) Σ1
3 set, which can not be reduced by any pair

of Σ1
3-sets, thus Σ1

3-reduction fails (a write up of Harrington’s proof can be
found in [9]).

The question for the other side of the projective hierarchy, namely for
Σ1
3-separation and Π1

3-reduction remained open though since then.
Goal of this article is to produce the counterpart to L. Harrington’s result:

Theorem. One can force over L a model of Σ1
3-separation over which there
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is a pair of Π1
3-sets, which can not be reduced by any pair of Π1

3-sets.

We add that our result uses completely different techniques and methods
than Sami’s and Harrington’s theorems. It follows from a modification of
the arguments from [7], that the proofs can be transferred from L to Mn,
the canonical inner model with n-many Woodin cardinal.

Theorem. Assuming that Mn exists, there is a model of Σ1
n`3-separation

over which there is a pair of Π1
n`3-sets, which can not be reduced by any pair

of Π1
n`3-sets.

The proof relies on the construction and ideas from [5], where a universe
with the Σ1

3-separation property is produced via forcing over L. However,
we will introduce some simplifications of the original argument, yielding a
cleaner presentation. We will use the coding machinery form [6] which is basi-
cally the same as in [7]. In [6] a universe is forced over L, where Π1

3-reduction
holds but the stronger Π1

3-uniformization fails. Our proof presented here will
take a quite different direction though and uses a more direct diagonalization
argument, where we actively work towards two Π1

3-sets B0, B1 which can not
be reduced by a pair of Π1

3-sets. As we simultaneously have to work towards
a stronger failure of Π1

3-reduction, we need to substantially alter the original
definitions and arguments for forcing the Σ1

3-separation.

1.1 Notation

The notation we use will be mostly standard, we hope. Diverging from the
conventions we write P “ pPα : α ă γq for a forcing iteration of length γ
with initial segments Pα. The α-th factor of the iteration will be denoted
with Ppαq, this is nonstandard as typically one writes 9Qα. Note here that
we drop the dot on Ppαq, even though Ppαq is in fact a Pα-name of a partial
order. If α1 ă α ă γ, then we write Pα1α to denote the intermediate forcing of
P which happens in the interval rα1, αq, i.e. Pα1α is such that P – Pα1 ˚Pα1α.

We write ΣnpXq, for X an arbitrary set, to denote the set of formulas
which are Σn and use elements from X as a parameter.

We write P , ϕ whenever every condition in P forces ϕ, and make de-
liberate use of restricting partial orders below conditions, that is, if p P P is
such that p , ϕ, we let P1 :“ Pďp :“ tq P P : q ď pu and use P1 instead
of P. This is supposed to reduce the notational load of some definitions and
arguments. We also write V rPs |ù ϕ to indicate that for every P-generic
filter G over V , V rGs |ù ϕ, and use V rPs to denote the generic extension of
V by P in case the particular choice of the generic filter does not matter in
the current context.
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2 Independent Suslin trees in L, almost disjoint
coding

The coding method of our choice utilizes Suslin trees, which can be generi-
cally destroyed in an independent way of each other.

Definition 2.1. Let ~T “ pTα : α ă κq be a sequence of Suslin trees. We
say that the sequence is an independent family of Suslin trees if for every
finite set of pairwise distinct indices e “ te0, e1, ..., enu Ă κ the product
Te0 ˆ Te1 ˆ ¨ ¨ ¨ ˆ Ten is a Suslin tree again.

Note that an independent sequence of Suslin trees ~T “ pTα : α ă κq has
the property that whenever we decide to generically add branches to some of
its members, then all the other members of ~T remain Suslin in the resulting
generic extension. Indeed, if A Ă κ and we form

ś

iPA Ti with finite support,
then in the resulting generic extension V rGs, for every α R A, V rGs |ù “Tα
is a Suslin tree”.

One can easily force the existence of independent sequences of Suslin trees
with products of Jech’s or Tennenbaum’s forcing, or with just products of
ordinary Cohen forcing. On the other hand independent sequences of length
ω1 already exist in L.

Theorem 2.2. Assume V “ L, then there is a Σ1ptω1uq-definable, indepen-
dent sequence ~S “ pSα | α ă ω1q of Suslin trees.

Proof. We fix a ♦-sequence paα Ă α | α ă ω1q. Next we alter the usual
construction of a Suslin tree from ♦ to construct an ω1-sequence of Suslin
trees ~T “ pTα | α ă ω1q. We consider a partition of ω1 into ω1-many
stationary sets tBα | α ă ω1u using the canonically defined ♦-sequence.
Hence we can assume that the partition is Σ1ptω1uq-definable over L.

If α is a limit stage, and β is such that α P Bβ , then we want to construct
the α ` 1-th level of T β , denoted by T βα`1 under the assumption that T βα is
already defined. First we assume that α is a not a limit point of Bβ , then
we define T βα`1 to be T βα and put infinitely many successors on each of the
top nodes of T βα . Second we assume that α is a limit point of Bβ . Then
we define T βα`1 as follows. We let e be an element of rω1s

ăω and we assume
that for each δ P e, we have a tree T δα defined already. We consider aα Ă α.
If aα happens to be a maximal antichain A in

ś

γPe T
γ
α , then we seal that

antichain off at level α ` 1 for
ś

γPe T
γ
α`1, that is we chose

ś

γPe T
γ
α`1 in

such a way that A remains a maximal antichain in all further extensions of
ś

γPe T
γ
α`1. Otherwise we just extend T βα via adding top nodes on countably

many branches through T βα .
We let T β :“

Ť

αăω1
T βα and claim that pT β | β ă ω1q is an independent

sequence of Suslin trees.
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Indeed, if A is an antichain in some
ś

γPe T
γ , then there is a club α such

that AXα is an antichain in
ś

γPe T
γ
α . But then A got sealed off in the next

step of
ś

γPe T
γ
α`1

The definability of ~S comes from the fact that the canonical ♦-sequence
in L is Σ1ptω1uq-definable. We can use Lω1 (which is Σ1ptω1uq to correctly
define♦ over it and consequentially ~S becomes definable over Lω1 as well.

Whenever we force with a Suslin tree pT,ăT q, i.e. we force with its nodes
to add an uncountable branche, we denote the forcing with T again.

We briefly introduce the almost disjoint coding forcing due to R. Jensen
and R. Solovay. We will identify subsets of ω with their characteristic func-
tion and will use the word reals for elements of 2ω and subsets of ω respec-
tively. Let D “ tdα α ă ℵ1u be a family of almost disjoint subsets of ω, i.e.
a family such that if r, s P D then r X s is finite. Let X Ă ω be a set of or-
dinals. Then there is a ccc forcing, the almost disjoint coding ADpXq which
adds a new real x which codes X relative to the family D in the following
way

α P X if and only if xX dα is finite.

Definition 2.3. The almost disjoint coding ADpXq relative to an almost
disjoint family D consists of conditions pr,Rq P rωsăω ˆ Dăω and ps, Sq ă
pr,Rq holds if and only if

1. r Ă s and R Ă S.

2. If α P X and dα P R then r X dα “ sX dα.

We shall briefly discuss the L-definable, ℵL1 -sized almost disjoint family
of reals D we will use throughout this article. The family D is the canonical
almost disjoint family one obtains when recursively adding the ăL-least real
xβ not yet chosen and replace it with dβ Ă ω where that dβ is the real which
codes the initial segments of xβ using some recursive bijections between ω
and ωăω.

3 Coding machinery

We continue with the construction of the appropriate notions of forcing which
we want to use in our proof. The goal is to first define a coding forcings
Codepxq for reals x, which will force for x that a certain Σ1

3-formula Φpxq
becomes true in the resulting generic extension. The coding method is almost
as in [7] and [6].

In a first step we destroy all members of ~S via generically adding an
ω1-branch, that is we first form

ś

αPω1
Sα with finite support and force with

it over L. Note that this is an ℵ1-sized, ccc forcing over L, so in the generic
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extension ℵ1 is preserved and CH remains to be true. We use W to denote
this generic extension of L.

We let W be our ground model now. Let x P W be a real, and let
m, k P ω. We simply write px,m, kq for a real w which codes the triple
px,m, kq in a recursive way. The forcing Codepx,m, k, 1q, which codes the
triple px,m, kq into ~S1 is defined as a two step iteration

Codepx,m, k, 1q :“ pCpω1qq
L ˚ 9Ap 9Y q,

where pCpω1qq
L is the usual ω1-Cohen forcing (i.e. adding an ω1-set with

countable conditions), as defined in L, and 9Ap 9Y q is the (name of) an almost
disjoint coding forcing, coding a particular set 9Y (to be defined as we proceed
in the discussion) into as real. Note that as Cpω1q is defined in L instead
of W , we can write the two step iteration pCpω1qq

L ˚ 9Ap 9Y q as defined over
W as a three step iteration pp

ś

αPω1
Sαq ˆ Cpω1qq ˚ 9Ap 9Y q over L. As Cpω1q

is σ-closed, ~S is still Suslin in LrCpω1qs, hence the forcing can be rewritten
as pCpω1q ˆ p

ś

αPω1
Sαqq ˚ 9Ap 9Y q. Consequentially the coding forcing does

preserve ℵL1 .
Next we shall describe the factor 9Ap 9Y q in detail. We let g Ă ω1 be a

Cpω1q
L-generic filter over L, and let ρ : rω1s

ω Ñ ω1 be some canonically
definable, constructible bijection between these two sets. We use ρ and g to
define the set h Ă ω1, which eventually shall be the set of indices of ω-blocks
of ~S, where we code up the characteristic function of the real (px, y,mq. Let

h :“ tρpg X αq : α ă ω1u

and let

A :“ tωγ ` 2n | γ P h, n R px,m, kqu Y tωγ ` 2n` 1 | γ P h, n P px,m, kq.u

X Ă ω1 be theă-least set (in some previously fixed well-order ofHpω2q
W rgs

which codes the following objects:

The ă-least set of ω1-branches in W through elements of ~S1 which
code px, y,mq at ω-blocks which start at values in h, that is we collect
tbβ Ă S1

β : β “ ωγ ` 2n, γ P h^ n P ω^ n R px, y,mqu and tbβ Ă S1
β :

β “ ωγ ` 2n` 1, γ P h^ n P ω ^ n P px, y,mqu.

Note that, when working in LrXs and if γ P h then we can read off
px,m, kq via looking at the ω-block of ~S1-trees starting at γ and determine
which tree has an ω1-branch in LrXs:

p˚q n P px,m, kq if and only if S1
ω¨γ`2n`1 has an ω1-branch, and n R

px,m, kq if and only if S1
ω¨γ`2n has an ω1-branch.
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Indeed if n R px,m, kq then we added a branch through S1
ω¨γ`2n. If on the

other hand S1
ω¨γ`2n is Suslin in LrXs then we must have added an ω1-branch

through S1
ω¨γ`2n`1 as we always add an ω1-branch through either S1

ω¨γ`2n`1

or S1
ω¨γ`2n and adding branches through some S1

α’s will not affect that some
S1
β is Suslin in LrXs, as ~S1 is independent.
We note that we can apply an argument resembling David’s trick 1 in this

situation. We rewrite the information of X Ă ω1 as a subset Y Ă ω1 using
the following line of reasoning. It is clear that any transitive, ℵ1-sized model
M of ZF´ which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model pM, Pq which contains
X as a set XM Ă ω1, then for any uncountable β such that LβrXM s |ù ZF´

and XM P LβrXM s:

LβrXM s |ù “The model decoded out of XM satisfies p˚q for every γ P h”.

In particular there will be an ℵ1-sized ordinal β as above and we can fix a club
C Ă ω1 and a sequence pMα : α P Cq of countable elementary submodels of
LβrXM s such that

@α P CpMα ă LβrXM s ^Mα X ω1 “ αq

Now let the set Y Ă ω1 code the pair pC,XM q such that the odd entries of
Y should code XM and if Y0 :“ EpY q where the latter is the set of even
entries of Y and tcα : α ă ω1u is the enumeration of C then

1. EpY q X ω codes a well-ordering of type c0.

2. EpY q X rω, c0q “ H.

3. For all β, EpY q X rcβ, cβ ` ωq codes a well-ordering of type cβ`1.

4. For all β, EpY q X rcβ ` ω, cβ`1q “ H.

We obtain

p˚˚q For any countable transitive model M of ZF´ such that ωM1 “ pωL1 q
M

and Y X ωM1 P M , M can construct its version of the universe LrY X
ωN1 s, and the latter will see that there is an ℵM1 -sized transitive model
N P LrY X ωN1 s which models p˚q for px,m, kq and every γ P hXM .

Thus we have a local version of the property p˚q.
In the next step 9Ap 9Y q, working in W rgs, for g Ă Cpω1q generic over

W , we use almost disjoint forcing ADpY q relative to our previously defined,
almost disjoint family of reals D P L (see the paragraph after Definition 2.5)

1see [2] for the original argument, where the strings in Jensen’s coding machinery are
altered such that certain unwanted universes are destroyed. This destruction is emulated
in our context as seen below.
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to code the set Y into one real r. This forcing only depends on the subset
of ω1 we code, thus ADpY q will be independent of the surrounding universe
in which we define it, as long as it has the right ω1 and contains the set Y .

We finally obtained a real r such that

p˚˚˚q For any countable, transitive model M of ZF´ such that ωM1 “ pωL1 q
M

and r P M , M can construct its version of Lrrs which in turn thinks
that there is a transitive ZF´-model N of size ℵM1 such that N believes
p˚q for px,m, kq and every γ P hXM .

Note that p˚˚˚q is a Π1
2-formula in the parameters r and px,m, kq, as the set

h XM Ă ωM1 is coded into r. We will often suppress the reals r, px,m, kq
when referring to p˚˚˚q as they will be clear from the context. We say in the
above situation that the real px,m, kq is written into ~S1, or that px,m, kq
is coded into ~S1 and r witnesses that px,m, kq is coded. Likewise a forcing
Ppx,m,kq,0 is defined for coding the real px,m, kq into ~S0.

The projective and local statement p˚˚˚q, if true, will determine how
certain inner models of the surrounding universe will look like with respect
to branches through ~S. That is to say, if we assume that p˚˚˚q holds for
a real px,m, kq and is the truth of it is witnessed by a real r. Then r also
witnesses the truth of p˚˚˚q for any transitive ZF´-model M which contains
r (i.e. we can drop the assumption on the countability of M). Indeed if we
assume that there would be an uncountable, transitive M , r P M , which
witnesses that p˚˚˚q is false. Then by Löwenheim-Skolem, there would be a
countable N ă M , r P N which we can transitively collapse to obtain the
transitive N̄ . But N̄ would witness that p˚˚˚q is not true for every countable,
transitive model, which is a contradiction.

Consequentially, the real r carries enough information that the universe
Lrrs will see that certain trees from ~S1 have branches in that

n P w “ px, y,mq ñ Lrrs |ù “S1
ωγ`2n`1 has an ω1-branch”.

and

n R w “ px, y,mq ñ Lrrs |ù “S1
ωγ`2n has an ω1-branch”.

Indeed, the universe Lrrs will see that there is a transitive ZF´-model N
which believes p˚q for every γ P h Ă ω1, the latter being coded into r. But
by upwards Σ1-absoluteness, and the fact that N can compute ~S1 correctly,
if N thinks that some tree in ~S1 has a branch, then Lrrs must think so as
well.

Next we define the set of forcings which we will use in our proof. We
aim to iterate the coding forcings we defined in the last section. As the
first factor is always pCpω1qq

L, the iteration we aim for is actually a hybrid
of an iteration and a product. We shall use a mixed support, that is we
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use countable support on the product-like coordinates which use pCpω1qq
L,

and finite support on the iteration-like coordinates which use almost disjoint
coding forcing.

Definition 3.1. A mixed support iteration P “ pPβ : β ă αq is called allow-
able (or 0-allowable, to anticipate later developments) if α ă ω1 and there
exists a bookkeeping function F : α Ñ Hpω2q

2 such that P is defined induc-
tively using F as follows:

• If F p0q “ px, iq, where x is a real, i P t0, 1u, then P0 “ Codepx, iq.
Otherwise P0 is the trivial forcing.

• Assume that β ą 0 and Pβ is defined, Gβ Ă Pβ is a generic filter over
W . Moreover assume that F pβq “ p 9x, iq, where 9x is a Pβ-name of a
real, and i is a Pβ-name of an element of t0, 1u and 9xGβ “ x. Then
let Ppβq “ Codepx, iGβ q “ Cpω1qq

L ˚ApY q, for the reshaped Y Ă ω1 as
being defined in the last section, and let Pβ`1 “ Pβ ˆpCpω1qq

L ˚ 9Ap 9Y q.
Otherwise we force with just pCpω1qq

L.

We use finite support on the iteration-like parts where almost disjoint cod-
ing is used and countable support on the product-like parts where ω1-Cohen
forcing, as computed in L is used.

Informally speaking, a (0-) allowable forcing just decides to code the reals
which the bookkeeping F provides into either ~S0 or ~S1. Note that the notion
of allowable can be defined in exactly the same way over any W rGs, where
G is a P-generic filter over W for an allowable forcing.

We also add that we could have defined allowable in an equivalent way
if we first added, over L, ω1-many Cohen subsets of ω1, ~C “ pCα : α ă ω1q

with a countably supported product, then, in a second step destroy all the
Suslin trees from ~S (note ~S remains independent after adding the ω1-many
ω1-Cohen subsets) and dub the resulting universe W 1. Then we can define
allowable over the new ground modelW 1 as just a finitely supported iteration
of almost disjoint coding forcings which select at each step injectively one
element C from ~C and the real given by the bookkepping F and the i P t0, 1u
and then code up all the branches of the trees from ~S0 or ~S1 according to
the real x we code for every ω-block with starting value in h Ă ω1 derived
from C as in the last section. That is to say, we could have moved the
product factors in an iteration of allowable forcings right at the beginning
of our iteration, which we are allowed to do anyway, as it is a product. Our
current and equivalent approach is a bit easier in terms of notation for later
parts of the proof, so we defined allowable the way we did.

We obtain the following first properties of allowable forcings:

Lemma 3.2. 1. If P “ pPpβq : β ă δq P W is allowable then for every
β ă δ, Pβ , |Ppβq| “ ℵ1, thus every factor of P is forced to have size
ℵ1.

9



2. Every allowable forcing over W preserves ω1.

3. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.
To see the second item we exploit some symmetry. Indeed, every al-

lowable P “ ˚βăδP pβq “ ˚βăδpppCpω1qq
L ˚ 9Ap 9Yβqq P W can be rewritten

as p
ś

βăδpCpω1qq
Lq ˚ p˚βăδ

9ADp 9Yβqq (again with countable support on the
pCpω1qq

L part and finite support on the almost disjoint coding forcings).
Using that W “ Lr

ś

αPω1
Sαs we can write P as a forcing over L as fol-

lows: (
ś

αPω1
Sαq ˆ

ś

βăδpCpω1qq
Lq ˚ p˚βăδ

9ADp 9Yβqq. This is the same as
(
ś

βăδpCpω1qq
L ˆ

ś

αPω1
Sαq q ˚ p˚βăδ

9ADp 9Yβqq
The latter representation is easily seen to be of the form P1 ˆ P2 ˚

p˚βăδ
9ADp 9Yβqq, where P1 is σ-closed, P2 has the ccc, and the third part

is a finite support iteration of ccc forcings, hence ω1 is preserved.
To see that the third item is true, we note that the definition of almost

disjoint coding forcing only depends on the subset of ω1 we want to code and
is independent of the surrounding universe V Ą W over which it is defined
as long as Y P V . In particular, if pYα Ă ω1 : α ă βq is a sequence of
subsets of ω1 in some ground model, then the finitely supported iteration
˚αăβ

9ApY̌αq is isomorphic to the finitely supported product
ś

αăβ ApYαq. So
we immediately see that if

P1 “ ˚βăδ1P pβq “
ź

βăδ1

pppCpω1qq
Lq˚βăδ1

9Ap 9Yβqq

and
P2 “ ˚βăδ2P pβq “

ź

βăδ2

pppCpω1qq
L ˚βăδ2

9Ap 9Yβqq

then
P1 ˆ P2 “

ź

βăδ1`δ2

ppCpω1qq
L ˚βăδ1

9Ap 9Yβqq˚βăδ2
9Ap 9Yβq

which is allowable.

The proof of the second assertion of the last lemma immediately gives us
the following:

Corollary 3.3. Let P “ pPpβq : β ă δq P W be an allowable forcing over
W . Then W rPs |ù CH. Further, if P “ pPpαq : α ă ω1q PW is an ω1-length
iteration such that each initial segment of the iteration is allowable over W ,
then W rPs |ù CH.

Let P “ pPpβq : β ă δq be an allowable forcing with respect to some
F P W . The set of (names of) reals which are enumerated by F we call the
set of reals coded by P. That is, for every β, if we let 9xβ be the (name) of a

10



real listed by F pβq and if we let G Ă P be a generic filter over W and finally
if we let 9xGβ “: xβ , then we say that txβ : β ă αu is the set of reals coded
by P and G (though we will suppress the G). Next we show, that iterations
of 0-allowable forcings will not add unwanted witnesses to the Σ1

3-formula
ψpw, iq which corresponds to the formula p˚˚˚q:

ψpw, iq ” Dr@MpM is countable and transitive and M |ù ZF´

and ωM1 “ pωL1 q
M and r, w PM ÑM |ù ϕpw, iqq

where ϕpw, iq asserts that in M ’s version of Lrrs, there is a transitive, ℵM1 -
sized ZF´-model which witnesses that w is coded into ~Si.

Lemma 3.4. If P P W is allowable, P “ pPβ : β ă δq, G Ă P is generic
over W and txβ : β ă δu is the set of reals which is coded by P. Let ψpv0q be
the distinguished formula from above. Then in W rGs, the set of reals which
satisfy ψpv0q is exactly txβ : β ă δu, that is, we do not code any unwanted
information accidentally.

Proof. Let G be P generic over W . Let g “ pgβ : β ă δq be the set of
the δ many ω1 subsets added by the pCpω1qq

L-part of the factors of P. We
let ρ : prω1s

ωqL Ñ ω1 be our fixed, constructible bijection and let hβ “
tρpgβ X αq : α ă ω1u. Note that the family thβ : β ă δu forms an almost
disjoint family of subsets of ω1. Thus there is α ă ω1 such that for arbitrary
distinct β1, β2 ă δ, α ą hβ1 X hβ2 and additionally, assume that α is an
index which does not show up in the set of indices of the trees we code with
P.

We let S1
α P

~S1. We claim that there is no real in W rGs such that
W rGs |ù Lrrs |ù “S1

α has an ω1-branch”. We show this by pulling out the
forcing S1

α out of P. Indeed if we consider W rPs “ LrQ0srQ1srQ2srPs, and
if S1

α is as described already, we can rearrange this to W rPs “ LrQ0srQ11 ˆ
S1
αsrQ2srPs “W rP1srS1

αs, where Q11 is
ś

β‰α S
1
β and P1 is Q0 ˚Q11 ˚Q2 ˚ P.

Note now that, as S1
α is ω-distributive, 2ωXW rPs “ 2ωXW rP1s, as Sα is

still a Suslin tree in W rP1s by the fact that ~S0 and ~S1 are independent, and
no factor of P1 besides the trees from ~S0 and ~S1 used in P1 destroys Suslin
trees. But this implies that

W rP1s |ù  DrLrrs |ù “S1
α has an ω1-branch”

as the existence of an ω1-branch through S1
α in the inner model Lrrs would

imply the existence of such a branch in W rP1s. Further and as no new reals
appear when passing to W rPs we also get

W rPs |ù  DrLrrs |ù “S1
α has an ω1-branch”.

On the other hand any unwanted information, i.e. any px,mq R tpxβ,mβq :
β ă δu such that W rGs |ù ψppx, i,mqq will satisfy that there is a real r such
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that
n P px, i,mq Ñ Lrrs |ù “S1

ωγ`2n`1 has an ω1-branch”

and
n R px, i,mq Ñ Lrrs |ù “S1

ωγ`2n has an ω1-branch”.

by the discussion of the last subsection for ω1-many γ’s.
But by the argument above, only trees which we used in one of the factors

of P have this property, so there can not be unwanted codes on the ~S1-side.
But the very same argument shows the assertion also for the ~S0-side. So for
our fixed α, there is no real r which codes an ω1 branch over Lrrs. But any
unwanted information would need not only one but even ℵ1-many such α’s
chosen as above. This shows that there can not be unwanted information in
W rGs, as claimed.

3.1 α-allowable forcings

The notion of 0-allowable will form the base case of an inductive definition.
Let α ě 0 be an ordinal and assume we defined already the notion of α-
allowable. Then we can inductively define the notion of α ` 1-allowable as
follows.

Suppose that γ ă ω1, F is a bookkeeping function,

F : γ Ñ Hpω2q
5

and
P “ pPβ : β ă γq

is a allowable forcing relative to F (in fact relative to some bookkeeping F 1

determined by F in a unique way - the difference here is not relevant).
Suppose that

E “ E0 Y E1 “ tp 9yδ,mδ, kδq : δ ď αu Y tp 9xδ, iδq : δ ď α, iδ P t0, 1uu

where mδ, kδ P ω and every 9xδ, 9yδ is a P-name of a real and for every two
ordinals β, γ ă α, if 9yβ and 9yγ are not the empty set, then P , p 9yβ,mβ, kβq ‰
p 9yγ ,mγ , kγq. Intuitively, E0 will serve as the set of pairs of boldface Σ1

3-sets,
for which we already obtained rules which allow us to separate them; whereas
E1 is the set of (names of) reals which we decided to never code along our
α-allowable iteration using the coding forcing Codepx, a, b, iq for two fixed
natural numbers a and b. The latter plays a role in establishing the eventual
failure of Π1

3-reduction.
Suppose that for every δ ď α, pPβ : β ă γq is δ-allowable with respect

to E æ δ “ pE0 æ δq Y pE1 æ δq “ tp 9yη,mη, kηq : η ă δu Y t 9xη : η ă δu and
F .

12



We assume first that 9xα`1 is the empty set and 9yα`1 is a P-name for a real
andmα`1, kα`1 P ω such that P , @δ ď αpp 9yδ,mδ, kδq ‰ p 9yα`1,mα`1, kα`1qq.
Then we say that pPβ : β ă γq is α ` 1-allowable with respect to E Y
t 9yα`1,mα`1, kα`1qu and F if it obeys the following rules.

1. Whenever β ă γ is odd and such that there is a Pβ-name 9x of a real
and a Pβ-name for an integer i such that

F pβq “ p 9x, 9yα`1,mα`1, kα`1, iq

and 9yα`1 is in fact a Pβ-name, and for Gβ a Pβ-generic overW ,W rGβs
thinks that

DQpQ is α-allowable with respect to E^
Q , x P Ampyα`1qq,

where x “ 9xG, and yα “ 9yGα`1. Then continuing to argue in W rGβs,
we let

Ppβq “ Codeppx, y,m, kq, 0q.

Note that we confuse here the quadruple px, y,m, kq with one real which
codes this quadruple.

2. Whenever β ă γ is such that there is a Pβ-name 9x of a real and a
Pβ-name i of an integer in t0, 1u such that

F pβq “ p 9x, 9yα`1,mα`1, kα`1, iq

and for Gβ which is Pβ-generic over W , W rGβs thinks that

@Q1pQ1 is α-allowable with respect to E
Ñ  pQ1 , x P Amp 9yα`1qqq

but there is a forcing Q2 such that W rGβs thinks that

Q2 is α-allowable with respect to E and
Q2 , x P Akp 9yα`1q

Then continuing to argue in W rGβs, we force with

Ppβq :“ Codeppx, y,m, kq, 1q.

Note that we confuse here again the quadruple px, y,m, kq with one
real w which codes this quadruple.

13



3. If neither 1 nor 2 is true, then either

Ppβq “ Codeppx, y,m, kq, 1q

or
Ppβq “ Codeppx, y,m, kq, 0q

depending on whether iGβ P t0, 1u was 0 or 1.

4. If F pβq “ p 9x, 9y,m, k, iq and for our Pβ-generic filter G, W rGs |ù @δ ď
α` 1pp 9yG,m, kq R EGq, then, working over W rGβs let

Ppβq “ Codeppx, y,m, kq, iGβ q

depending on whether iGβ P t0, 1u was 0 or 1.

If, on the other hand 9yα`1 is the empty set as is mα`1, kα`1 and 9xα`1
is the P-name of a real, then we define α ` 1-allowable with respect to F
and E Y tp 9xα`1, iqu, where i P t0, 1u to be α-allowable relative to E and F
plus the additional rule, that we will not use factors in our iteration which
contain Codep 9xα`1, a, b, iq.

This ends the definition for the successor step α Ñ α ` 1. For limit
ordinals α, we say that a allowable forcing P is α allowable with respect to E
and F if for every η ă α, pPβ : β ă γq is η-allowable with respect to E æ η
and some F 1.

We add a couple of remarks concerning the last definition.

• By definition, if δ2 ă δ1 and P1 is δ1-allowable with respect to E “

tp 9yβ,mβ, kβq : β ď δ1u Y tp 9xβ, iβq : β ď δ1 and some F1, then P1 is
also δ2-allowable with respect to E æ δ2 “ tp 9yβ,mβ, kβq : β ď δ2u Y
tp 9xβ, iβq : β ď δ2, iβ P t0, 1uu and an altered bookkeeping function F 1.

• The notion of α-allowable can be defined in a uniform way over any
allowable extension W 1 of W .

• We will often just say that some iteration P is α-allowable, by which
we mean that there is a set E and a bookkeeping F such that P is
α-allowable with respect to E and F .

4 Closure under products

Lemma 4.1. Let α be an ordinal, assume that W 1 is some α-allowable
generic extension of W , and that P1 “ pP1

β : β ă δq and P2 “ pP2
β :

β ă δq are two α-allowable forcings over W 1 with respect to a common set
E “ E0 Y E1 “ tp 9yδ,mδ, kδq : δ ă αu Y tp 9xδ, iδq : δ ă αu and bookkeeping
functions F1 and F2 respectively. Then there is a bookkeeping function F
such that P1 ˆ P2 is α-allowable over W 1 with respect to E and F .
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Proof. We define F æ δ1 to be F1. For values δ1`β ą δ1 we let F pδ1`βq be
such that its value on the first four coordinates equal the first four coordinates
of F2pβq, i.e. F pδ1 ` βq “ p 9x, 9y,m, k, iq for some i P t1, 2u where F2pβq “
p 9x, 9y,m, k, i1q. We claim now that we can define the remaining value of F pβq,
in such a way that the lemma is true. This is shown by induction on β ă δ2.

First we note that for E “ E0 Y E1 we can fully concentrate on the set
E0 in our argument, that is the odd stages β of our iteration, as E1 defines a
set of coding forcings we must not use in an α-allowable forcing with respect
to E, and this is clearly closed under products.

Let pP2qβ be the iteration of P2 up to the odd stage β ă δ2. Assume,
that P1 ˆ pP2qβ is in fact an α-allowable forcing relative to E and F . Then
we have that F pδ1 ` βq æ 5 “ F2pβq æ 5 “ p 9x, 9y,m, kq, and we claim that at
that odd stage,

Claim 1. If we should apply case 1,2, 3, or 4 when considering the forcing
P1ˆP2 as an α-allowable forcing relative to E “ E0YE1 over the model W 1,
we must apply the same case when considering P2 as an α-allowable forcing
over the model W 1 relative to E.

Once the claim is shown, the lemma can be proven as follows by induction
on β ă δ2: we work in the model W 1rP1srpP2qβs, consider F pδ1 ` βq æ 5 “
F2pβq æ 5, and ask which of the four cases has to be applied. By the claim,
it will be the same case, as when considering P2 over W 1 as an α-allowable
forcing relative to E and F2. In particular the forcing P2pβq we define at
stage β will be a choice obeying the rules of α-allowable even when working
over the model W 1rP1srpP2qβs. This shows that P1 ˆ P2 is an α-allowable
forcing relative to E and some F over W 1.

The proof of the claim is via induction on α. So we assume that α “ 1
and both P1 and P2 are 1-allowable with respect to E “ E0YE1. As the case
E “ E1 is clear, we can assume that E “ E0 “ t 9y,m, ku. We shall show that
there is a bookkeeping F such that pP2qβ : β ă δ2uq is still 1-allowable with
respect to E, even when considered in the universe W 1rP1s. We assume first
that at stage δ1`β of P1ˆP2 case 1 in the definition of 1-allowable applies,
when working in the model W 1rP1srpP2qβs relative to E and F . Thus

F pβq æ 5 “ p 9x, 9y,m, kq

and p 9y,m, kq P E and for any G1 ˆGβ which is P1 ˆ pP2qβ-generic over W 1,
if 9xGβ “ x and 9yGβ “ y, the universe W 1rG1 ˆGβs thinks that

DQpQ is 0-allowable with respect to E and some F ^

Q , x P Ampyqq.

Thus, if we work over W 1rGβs instead it will think

DpP1 ˆQqpP1 ˆQ is 0-allowable ^
P1 ˆQ , x P Ampyqq.
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Thus, at stage β, we are in case 1 as well, when considering P2 as an 1-
allowable forcing over W 1 relative to E.

If, at stage β, case 2 applies, when considering P1 ˆ P2 as a 1-allowable
forcing with respect to E overW 1, then we argue first that case 1 is impossible
when considering P2 as a 1-allowable forcing over W 1. Indeed, assume for a
contradiction that case 1 must be applied, then, by assumption, P2pβq will
force that x P Ampyq. Yet, by Shoenfield absoluteness, P2pβq would witness
that we are in case 1 at stage β when considering P1ˆP2 as 1-allowable with
respect to E over W 1, which is a contradiction.

Thus we can not be in case 1 and we shall show that we are indeed in
case 2, i.e. there is a 0-allowable forcing Q, such that Q , x P Akpyq, but
such a Q exists, namely P2pβq,

Finally, if at stage β, case 3 applies when considering P2 as a 1-allowable
forcing with respect to E over W 1rP1s, we claim that we must be in case 3
as well, when considering P2 over just W 1. If not, then we would be in case
1 or 2 at β. Assume without loss of generality that we were in case 1, then,
as by assumption P2 is 1-allowable over W 1, P2pβq will force , x P Ampyq.
But this is a contradiction, so we must be in case 3 as well. This finishes the
proof of the claim for α “ 1.

We shall argue now that the Claim is true for α ` 1-allowable forcings
provided we know that it is true for α-allowable forcings. Again we can
focus on the case when α ` 1 allowable forcings are obtained via enlarging
E0, as enlarging E1 just means to avoid certain coding forcings, which is
trivial to be closed under products. We shall show the claim via induction
on β. So assume that P1ˆ pP2qβ is α` 1-allowable with respect to E “ E æ
αY tp 9y,mα, kαqu and an F whose domain is δ1 ` β. We look at

F pδ1 ` βq æ 5 “ F2pβq æ 5 “ p 9x, 9y,mα, kαq

We concentrate on the case where β is such that case 2 applies when con-
sidering P1 ˆ pP2qβ over W 1. The rest follows similarly. Our goal is to show
that case 2 must apply when considering the β-th stage of the forcing using
F2 and E over W 1rpP2qβs as well.

Assume first for a contradiction, that, when working over W 1rpP2qβs, at
stage β, case 1 applies. Then, for any pP2qβ-generic filter Gβ over W 1,

W 1rGβs |ù DQpQ is α-allowable with respect to E æ α and some F 1 and
Q , x P Ampyqq

Now, as P2 is α-allowable, we know that P2pβq is such that P2pβq , x P
Ampyq.

Thus, using the upwards-absoluteness of Σ1
3-formulas, at stage β of the

α ` 1-allowable forcing determined by F and E, there is an α-allowable
forcing Q with respect to E æ α which forces x P Ampyq, namely P2pβq.
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But this is a contradiction, as we assumed that when considering P1ˆpP2qβ

over W 1 at stage β, case 1 does not apply, hence such an α-allowable forcing
should not exist.

So we know that case 1 is not true. We shall show now that case 2 must
apply at stage β when considering P2 over the universe W 1. By assumption
we know that

W 1rP1srpP2qβs |ùDQ2pQ2 is α-allowable with respect to E æ α and
Q2 , x P Akpyq

As P1 is α ` 1-allowable with respect to E and F1, it is also α-allowable
with respect to E æ α and some altered F 11, thus, as a consequence from the
induction hypothesis, we obtain that

W 1rpP2qβs |ù P1 ˆQ2 is α-allowable and P1 ˆQ2 , x P Akpyq.

But then, P1 ˆ Q2 witnesses that we are in case 2 as well when at stage β
of P2 over W 1. This ends the proof of the claim and so we have shown the
lemma.

5 Ideas for the proof

This section will be used to briefly explain the set up and the structure of the
proof of the main theorem. There are two goals we aim to accomplish. First,
we want to force Σ1

3-separation. For this, we will use an ω1-length iteration.
We list all Σ1

3-formulas in two free variables pϕnpv0, v1q | n P ωq. We shall
use a bookkeeping device which enumerates simultaneously in an ω1-length
list all pairs of natural numbers pm, kq P ω2 and (names of) reals 9y. These
objects m, k, 9y correspond to pairs of Σ1

3-sets Amp 9yq and Akp 9yq (the (name
of a) real 9y serves as a parameter in the k-th and m-th Σ1

3-formula ϕm and
ϕk) we want to separate.

At the same time we want to create a universe over which there are two
(lightface) Π1

3-sets B0 and B1 which we will design in such a way, that no
(boldface) pair of Π1

3-sets exists, which reduces B0 and B1.
We settle to work towards Σ1

3-separation on the odd stages of our it-
eration, whereas we work towards a failure of Π1

3-reduction on the even
stages of the iteration. The iteration itself will consist of the coding forcings
Codepx, y,m, kq applied over L to make certain reals of the form px, y,m, kq
to satisfy our two Σ1

3-formulas Φ0px, y,m, kq or Φ1px, y,m, kq. The final goal
is that for any fixed pair of natural numbersm, k, and any parameter y P ωω,
there is a real parameter Ry,m,k and a fixed Σ1

3 formula σ such that the sets

D0
y,m,kpRy,m,kq :“ tx | Φ0px, y,m, kq ^ σpx,Ry,m,kqu

and
D1
y,m,kpRy,m,kq :“ tx | Φ1px, y,m, kq ^ σpx,Ry,m,kqu
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will become the separating sets for the pair of Σ1
3pyq-definable sets Ampyq

and Akpyq, i.e. Ampyq Ă D0
y,m,k, Akpyq Ă D1

y,m,k and D0
y,m,kpRy,m,kq Y

D1
y,m,kpRy,m,kq “ ωω and D0

y,m,kpRy,m,kq XD
1
y,m,kpRy,m,kq “ H.

At the same time we need to work towards a failure of Π1
3-reduction which

will be done on the even stages of the iteration. We aim to accomplish the
failure of Π1

3-reduction via exhibiting two Π1
3-sets (lightface)B0 and B1 which

are chosen in such a way that the question of whether some real x is in B0 or
B1 can be changed using the coding forcings Code without interfering with
the coding forcings we have to use in order to work for the Σ1

3-separation.
This freedom will be used to define our ω1-length iteration of coding forcings
so that eventually B0 and B1 can not be reduced by any pair of (boldface)
Π1

3-sets, thus yielding a slightly stronger failure than just a failure of Π1
3-

reduction.

6 The first step of the iteration

We let
~ϕ :“ pϕnpv0, v1q | n P ωq

be a fixed recursive list of the Σ1
3-formulas in two free variables. We allow

that v0 or v1 actually do not appear in some of the ϕn’s, so our list also
contains all Σ1

3-formulas in one free variable. We use ψn to denote  ϕn, i.e.
ψn is the n-th Π1

3-formula in the recursive list of Π1
3-formulas induced by ~ϕ.

We fix two Σ1
3-formulas ϕa, ϕb which provably have non-empty intersec-

tion, e.g. ϕapv0q “ Dv0pv0 “ v0q and ϕb “ Dv0pv0 “ v0 ^ v0 “ 1q. As a
consequence, we need not to separate Aa and Ab, thus coding forcings of
the form Codep 9x, a, b, iq for any (name of a) real 9x, for a, b our fixed natural
numbers and for i P t0, 1u can be used freely in our definition of the iteration
to come.

Next we assume for notational simplicity that  ϕ0 and  ϕ1, i.e. the
negation of the first and the negation of the second formula in our list look
like this:

 ϕ0pv0q “ ψ0pv0q “ “pv0, a, bq is not coded into the ~S0-sequence”

 ϕ1pv0q “ ψ1pv0q “ “pv0, a, bq is not coded into the ~S1-sequence”

The resulting sets will be defined like this:

B0 “ tx P ω
ω | ψ0pxqu

B1 “ tx P ω
ω | ψ1pxqu

Note that for any given real x P ωω, we can manipulate the truth
value of ψ0pxq and ψ1pxq via using the coding forcings Codepx, a, b, 0q and
Codepx, a, b, 1q respectively from true to false (and once false it will remain
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false because of upwards absoluteness of Σ1
3-formulas). This in particular

will not interfere with the yet to be defined procedure of forming the αβ-
allowable forcings, we will need in order to force Σ1

3-separation. Thus we
gain some amount of flexibility in how we can make the sets B0 and B1

behave. We will use this to diagonalise against all possible Π1
3-sets Bm, bk

in such a way that none of those can reduce B0 and B1. This ensures the
failure of Π1

3-reduction.

7 Towards Σ1
3-separation

We are finally in the position to define the iteration which will yield a universe
of Σ1

3-separation and a failure of Π1
3-reduction.

The iteration we are about to define inductively will be an allowable
iteration, whose tails are α-allowable and α-increases along the iteration.
We start with fixing a bookkeeping function

F : ω1 Ñ Hpω1q
4

which visits every element cofinally often. The role of F is to list all the
quadruples of the form p 9x, 9y,m, kq, where 9x, 9y are names of reals in the
forcing we already defined, andm and k are natural numbers which represent
Σ1
3-formulas or Π1

3-formulas with two free variables, cofinally often. Assume
that we are at stage β ă ω1 of our iteration. By induction we will have
constructed already the following list of objects.

• An ordinal αβ ď β and a set Eαβ “ E0
αβ
Y E1

αβ
which is of the form

t 9yη,mη, kη : η ă αβu Y tp 9xη, iηq : η ă αβu, where 9yη, 9xη are Pβ-
names of a reals, mη, kη are natural numbers and iη P t0, 1u. As a
consequence, for every bookkeeping function F 1, we do have a notion
of η-allowable relative to E and F 1 over W rGβs.

• We assume by induction that for every η ă αβ , if βη ă β is the η-th
stage in Pβ , where we add a new member to Eαβ , then W rGβη s thinks
that the Pβηβ is η-allowable with respect to Eαβ æ η.

• If p 9yη,mη, kηq P Eαβ , then we set again βη to be the η-th stage in Pβ
such that a new member to Eαβ is added. In the model W rGβη s, we
can form the set of reals Rη which were added so far by the use of a
coding forcing in the iteration up to stage βη, and which witness p˚˚˚q
holds for some px, y,m, kq;

Note that Rη is a countable set of reals and can therefore be identified
with a real itself, which we will do. The real Rη is an error term and
indicates the set of coding areas we must avoid when expecting correct
codes, at least for the codes which contain 9yη,mη and kη.
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Assume that β is odd, F pβq “ p 9x, 9y,m, kq, assume that 9x, 9y are Pβ-names for
reals, and m, k P ω correspond to the Σ1

3-formulas ϕmpv0, v1q and ϕkpv0, v1q.
Assume that Gβ is a Pβ-generic filter over W . Let 9xGβ “ x and 9y

Gβ
1 “

y1, 9y
Gα
2 “ y2. We turn to the forcing Ppβq we want to define at stage β in

our iteration. Again we distinguish several cases.

(A) Assume that W rGβs thinks that there is an αβ-allowable forcing Q
relative to Eαβ and some F 1 such that

Q , Dzpz P Ampyq XAkpyqq.

Then we pick the ă-least such forcing, where ă is some previously
fixed wellorder. We denote this forcing with Q1 and use

Ppβq :“ Q1.

We do not change Rβ at such a stage.

(B) Assume that (A) is not true.

(i) Assume however that there is an αβ-allowable forcing Q inW rGβs
with respect to Eαβ such that

Q , x P Ampyq.

Then we set

9Qβ “ Ppβq :“ Codepx, y,m, k, 0q.

In that situation, we enlarge theE-set as follows. We let p 9y,m, kq “:
p 9yαβ ,mαβ , kαβ q and

Eαβ`1 :“ Eαβ Y tp 9y,m, kqu.

Further, if we let rη be the real which is added by Codeppx, y,m, kq, 0q
at stage η of the iteration which witnesses p˚˚˚q of some quadru-
ple pxη, yη,mη, kη). Then we collect all the countably many such
reals we have generically added so far in our iteration up to stage
β and put them into one set R and let

Rαβ`1 :“ R.

(ii) Assume that (i) is wrong, but there is an αβ-allowable forcing Q
with respect to Eαβ in W rGβs such that

Q , x P Akpyq.
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Then we set
Ppβq :“ Codepx, y,m, k, 1q.

In that situation, we enlarge the E-set as follows. We let the new
E value p 9yαβ ,mαβ , kαβ q be p 9y,m, kq and

Eαβ`1 :“ Eαβ Y tp 9y,m, kqu.

Further, if we let rη be the real which is added by Codepx, y,m, k, iq, i P
t0, 1u at stage η of the iteration which witnesses p˚˚˚q of some
quadruple pxη, yη,mη, kη). Then we collect all the countably
many such reals we have added so far in our iteration up to stage
β and put them into one set R and let

Rαβ`1 :“ R.

(iii) If neither (i) nor (ii) is true, then there is no αβ-allowable forcing
Q with respect to Eαβ which forces x P Ampyq or x P Akpyq, and
we set

Ppβq :“ Codeppx, y,m, kq, 1q.

Further, if we let rη be the real which is added by Codeppx, y,m, kq, 1q
at stage η of the iteration which witnesses p˚˚˚q of some quadru-
ple pxη, yη,mη, kη). Then we collect all the countably many such
reals we have added so far in our iteration up to stage β and put
them into one set R and let

Rαβ`1 :“ R.

Otherwise we force with the trivial forcing.

8 Towards a failure of Π1
3-reduction

Assume that β ă ω1 is an even stage of our iteration. Our induction hypoth-
esis includes that we have created already the iteration Pβ up to stage β, and
that we defined the notion of αβ-allowable forcings for an ordinal αβ ă ω1.
Assume that F pβq “ pm, k, 9yq, where m, k P ω and 9y is the Pβ-name of a
real number. We consider the following cases:

8.1 Case 1

We first assume that, working over LrGβs, there is a further αβ-allowable
forcing P P LrGβs such that P adds two reals x0 and x1 and such that for a
P-generic filter G over LrGβs, LrGβsrGs satisfies:

1. x0 P BmzBk and px0, y, a, bq is neither coded into ~S0 nor ~S1.
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2. x1 P BkzBm and px1, y, a, bq is neither coded into ~S0 nor ~S1.

In that situation we first use the ăL-least Pβ-name of such a forcing P to
add the reals x0 and x1. After forcing with P we code x0 and x1 both into
~S1 via forcing with Codepx0, a, b, 1q ˆ Codepx1, a, b, 1q. The forcing

P ˚ pCodepx0, a, b, 1q ˆ Codepx1, a, b, 1qq “: Ppβq “ 9Qβ

is the forcing we use at stage β in the situation of case 1. We also change
the notion of αβ-allowable to αβ ` 1-allowable which is defined to be αβ-
allowable together with the additional demand to neither use the forcing
Codepx0, a, b, 0q nor Codepx1, a, b, 0q. In other words we let Eαβ`1 :“ Eαβ Y
tpx0, 0q, px1, 0qu. Note that this choice ensures that x0 and x1 will both be
elements of B0 in all outer αβ ` 1-allowable extensions.

Note that the choice of Ppβq “ 9Qβ and αβ`1-allowability already ensures
that Bmpyq, Bkpyq can not reduce B0 and B1 in all possible αβ ` 1-generic
extensions of LrGβ`1s.

Lemma 8.1. The sets Bmpyq and Bkpyq can not reduce B0 and B1 in all
outer models of LrGβ`1s which are obtained by a further αβ ` 1-allowable
forcing.

Proof. Indeed, we shall consider three subcases to see this. We work in
M Ą LrGβ`1s where M is an outer model obtained by a further αβ ` 1-
allowable forcing.

Case 1a: First we assume that x0 P BmzBk and x1 P BkzBm still holds inM . In
this situation neither Bm Ă B1 nor Bk Ă B1 can hold as witnessed by
x0 and x1. In particular, Bmpyq and Bkpyq can not reduce B0 and B1.
Note that this will remain true in all further outer models obtained
by an additional αβ ` 1-allowable forcing as long as x0 P BmzBk and
x1 P BkzBm. If xi will drop out of Bm or Bk in some αβ ` 1-allowable
extension, then case 1b and case 1c will apply.

Case 1b: We assume that x0 P BmzBk but x1 R Bm Y Bk holds in M . In
this situation we can not have B0 Y B1 “ Bm Y Bk as x1 P B0 and
x1 R Bm Y Bk. Note that x1 P B0 will remain true in outer αβ ` 1-
allowable models, as we settled to never use Codepx1, y, a, b, 0q and
x1 R Bm Y Bk by the upwards absoluteness of the Σ1

3-formulas  ψm
and  ψk. As a consequence, Bmpyq and Bkpyq can not reduce B0 and
B1 in all outer αβ ` 1-allowable models M .

Case 1c: In the dual case we assume that x1 P BmpyqzBkpyq but x0 R Bmpyq Y
Bkpyq holds in M to derive, as above, that B0YB1 ‰ Bmpyq YBkpyq.

Case 1d: If x0 and x1 are both not in Bmpyq and Bkpyq, then again Bmpyq Y
Bkpyq ‰ B0 YB1.
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To summarize: In the described case 1, we defined an αβ-allowable forc-
ing 9Qβ and the notion of αβ ` 1-allowable forcings, such that αβ-allowable
forcings are also αβ ` 1-allowable (but not vice versa). Additionally in all
further αβ ` 1-allowable generic extensions of LrGβ`1s, the sets Bmpyq and
Bkpyq can not reduce B0 and B1.

8.2 Case 2

In the second case, we assume that case 1 does not apply. As a consequence,
whenever we work over LrGβs and apply a further αβ-allowable forcing P
which adds two reals x0 ‰ x1 and does neither have Codepx0, a, b, iq nor
Codepx1, a, b, iq as a factor for i P t0, 1u, then x0, x1 will not satisfy that
x0 P BmpyqzBkpyq and x1 P BkpyqzBmpyq.

Again, we shall split into subcases:

Case 2a: There is an αβ-allowable P and a G Ă P such that in LrGβsrGs there
are x0 ‰ x1 such that x0, x1 P BmzBk. In this situation, we force
over LrGβsrGs with Codepx0, a, b, 1qˆCodepx1, a, b, 0q. Let H0ˆH1 Ă

Codepx0, a, b, 1q ˆ Codepx1, a, b, 0q be a LrGβsrGs-generic filter; and
define Gβ`1 :“ Gβ ˚ G ˚ pH0 ˆH1q. We also define αβ ` 1-allowable
as being αβ-allowable with the additional rule that Codepx0, a, b, 0q
and Codepx1, a, b, 1q will not be used anymore as factors. (Note that
as a consequence of this x0 P B0 and x1 P B1 will remain true in all
αβ ` 1-allowable generic extensions of LrGβ`1s). That is, we define
Eαβ`1 :“ Eαβ Y tpx0, 0q, px1, 1qu. Then we argue as follows:

Lemma 8.2. Let M be an outer model of LrGβ`1s obtained via an
αβ ` 1-allowable forcing. Then Bmpyq and Bkpyq can not reduce B0

and B1 over M .

Proof. We split into several cases. Assume first that in M Ą LrGβ`1s,
x0, x1 P Bmpyq still holds true. Then, as x0 P B0zB1 and x1 P B1zB0,
the set Bmpyq can neither reduce B0 nor B1. Indeed x0 witnesses that
Bmpyq is not a subset of B1 and x1 witnesses that Bmpyq is not a subset
of B0. If, in a further αβ ` 1-allowable extension of M Ą LrGβ`1s,
x0 R Bmpyq or x1 R Bmpyq then this will be dealt with in the next
subcases.

If in M Ą LrGβ`1s, x0 R Bmpyq, yet x1 P Bmpyq then x0 R Bmpyq Y
Bkpyq and x0 P B0 in all αβ ` 1-allowable generic extensions of M . So
Bmpyq Y Bkpyq ‰ B0 Y B1 and Bmpyq, Bkpyq can not reduce B0, B1.
The same argument works if x1 R Bmpyq and x0 P Bmpyq.

If in M , x0, x1 R Bmpyq anymore, then again Bmpyq, Bkpyq can not
reduce B0, B1.
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Case 2b: The dual situation in which we can force x0 ‰ x1 such that x0, x1 P
BkpyqzBmpyq is dealt with in the analogous way.

Case 2c: If neither 2a nor 2b are true, then one can not force two distinct
reals x0, x1 into BmpyqzBkpyq with αβ-allowable forcings which do
not contain Codepx0, a, b, iq or Codepx1, a, b, iq for i P t0, 1u. And the
same holds true for BkpyqzBmpyq. But it is straightforward to use an
αβ-allowable forcing P over LrGβs which will add ℵ1-many new reals
pzi | i ă ω1q and neither Codepzi, a, b, 0q nor Codepzi, a, b, 1q is a factor
of P. We force with such a P, let G Ă P be generic over LrGβs and
let LrGβ`1s “ LrGβsrGs. We set αβ ` 1-allowable forcing to be αβ-
allowable with the additional constraint that neither Codepzi, a, b, 0q
nor Codepzi, a, b, 1q must be used.

Lemma 8.3. If M is an outer model of LrGβ`1s, obtained with a
further αβ`1-allowable forcing. Then Bmpyq and Bkpyq can not reduce
B0, B1.

Proof. For every αβ`1-allowable extensionM of LrGβ`1s, @i ă ω1pzi P
B0 Y B1q must hold in M , yet for any pair zi ‰ zj , M |ù zi, zj P
Bmpyq XBkpyq or M |ù zi, zj R pBmpyq YBkpyqq. In both cases, zi, zj
witness that Bmpyq and Bkpyq can not reduce B0, B1 over M .

To summarize: in both cases we defined an extension LrGβ`1s of
LrGβs, and the notion of αβ ` 1-allowable forcings. Additionally we
found reals which witness that Bmpyq and Bkpyq can not reduce B0

and B1 in all further outer models M of LrGβ`1s which are obtained
with a further αβ ` 1-allowable forcing.

At limit stages β, we use the mixed support to define the limit partial
order Pβ and set Eαβ “

Ť

ηăβ Eαη . This ends the definition of Pω1 .

9 Discussion of the resulting universe

We let Gω1 be a Pω1-generic filter over W . As W rGω1s is a proper extension
of W , ω1 is preserved. Moreover CH remains true.

A second observation is that for every stage β of our iteration and every
η ą β, the intermediate forcing Prβ,ηq, defined as the factor forcing of Pβ and
Pη, is always an αβ-allowable forcing relative to Eαβ and some bookkeeping.
This is clear as by the definition of the iteration, we force at every stage
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β with a αβ-allowable forcing relative to Eαβ and αβ-allowable becomes a
stronger notion as we increase αβ .

A third observation is, that B0 and B1 can not be reduced by any pair of
boldface Π1

3-sets Bmpyq, Bkpyq. This follows immediately from the definition
and the discussion of the iteration on even stages. Indeed if Bmpyq and
Bkpyq are arbitrary Π1

3-sets, then, if 9y is some nice name of y, the triple
pm, k, 9yq will be guessed by the bookkeeping function cofinally often on the
even stages. But on the first stage β where it is guessed, we ensured that
B0 and B1 can not be reduced by Bmpyq and Bkpyq. And this remains
true for all further αβ ` 1-allowable extensions of LrGβ`1s. As LrGω1s is an
αβ ` 1-allowable extension of LrGβ`1s, the assertion follows.

We still need to show that in LrGω1s the Σ1
3-separation property is true.

For a pair of disjoint Σ1
3pyq-sets, Ampyq and Akpyq, we consider the least

stage β such that there is a Pβ-name 9z such that 9zGβ “ z and pz, y,m, kq are
considered by F at stage β. We consider the real Rαβ which codes up all the
reals which witness an instance of p˚˚˚q for some quadruple px1, y1,m1, k1q.
This real Rαβ contains the information for all coding areas and quadruples
px1, y1,m1, k1q we have coded up so far into ~S in our iteration. As mentioned
already, the role of Rαβ is that of an error term. We might have added false
patterns in our iteration so far, but these false patterns will appear in a
coded form in Rαβ . Our definitions will ensure that for the pair Ampyq and
Akpyq, modulo Rαβ , the set of reals x for which the quadruple px, y,m, kq is
coded into ~S0, and the set of reals x, for which the quadruple px, y,m, kq is
coded into ~S1 will separate Ampyq and Akpyq:

x P D0
y,m,kpRαβ q ô DrpLrr,Rαβ s |ù px, y,m, kq can be read off from a code

written on an ω1-many ω-blocks of elements of
~S0 and the coding area of px, y,m, kq
is almost disjoint from each coding area in Rαβ q.

and

x P D1
y,m,kpRαβ q ô DrpLrr,Rαβ s |ù px, y,m, kq can be read off from a code

written on an ω1-many ω-blocks of elements of
~S1 and the coding area of px, y,m, kq
is almost disjoint from each coding area in Rαβ q.

It follows from the definition of the iteration that for any real parameter
y and any m, k P ω, D0

y,m,kpRαβ q Y D1
y,m,kpRαβ q “ ωω. Indeed, as our

bookkeeping function visits each name of a real in our iteration ℵ1-many
times, it will list each real x P W rGω1s unboundedly often below ω1. Thus
px, y,m, kq will be coded into ~S0 or ~S1 at stages β1 ą β, which gives that
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D0
y,m,kpRαβ q YD

1
y,m,kpRαβ q “ ωω The next lemma establishes that the sets

are indeed separating.

Lemma 9.1. In W rGω1s, let y be a real and let m, k P ω be such that
Ampyq X Akpyq “ H. Then there is an real R such that the sets D0

y,m,kpRq

and D1
y,m,kpRq partition the reals.

Proof. Let β be the least stage such that there is a real x such that F pβq “
p 9x, 9y,m, kq with 9xGβ “ x, 9yGβ “ y. Let R be Rαβ for Rαβ being defined as
above. Then, as Ampyq and Akpyq are disjoint in W rGω1s, by the rules of
the iteration, case B must apply at β.

Assume now for a contradiction, that D0
y,m,kpRq and D

1
y,m,kpRq do have

non-empty intersection in W rGω1s. Let z P D0
y,m,kpRq XD1

y,m,kpRq and let
γ ą β be the first stage of the iteration which sees that z is in the intersection.
Then, by the rules of the iteration and without loss of generality, we must
have used case B(i) at the first stage δ ě β of the iteration where pz, y,m, kq
is listed by the bookkeeping F , and case B(ii) at stage γ. But this would
imply, that at stage δ, there is an αδ-allowable forcing Qδ with respect to
Eαδ , which forces z P Ampyq, yet at stage γ ą δ, there is an αγ-allowable
forcing which forces z P Akpyq. As γ ą δ, the αγ-allowable forcing Qγ

which witnesses that we are in case B (ii) at stage γ in our iteration, is also
αδ-allowable. But this means that, over W rGδs, the intermediate forcing
Pδ,γ , which is also αδ-allowable can be extended to the αδ-allowable forcing
which first uses Pδ,γ and then Qγ (denotes by Pδ,γ " Qγq, as it is, very strictly
speaking not an iteration but a hybrid of an iteration and a product)) yielding
an αδ-allowable forcing which forces z P Akpyq.

On the other hand, in W rGδs we do have Qδ which forces z P Ampyq,
as we assumed that at stage δ we are in case B (i). Now the product Qδ ˆ

pPδ,γ " Qγq is αδ-allowable, and by upwards absoluteness of Σ1
3-formulas we

get that
Qδ ˆ pPδ,γ " Qγq , z P Ampyq XAkpyq.

But this would mean that at stage δ, we are in case A in the definition of
our iteration, which is a contradiction.

Lemma 9.2. In W rGω1s, for every pair m, k and every parameter y P ωω

such that Ampyq XAkpyq “ H there is a real R such that

Ampyq Ă D0
y,m,kpRq ^Akpyq Ă D1

y,m,kpRq

Proof. The proof is by contradiction. Assume that m, k and y are such that
for every real R there is z such that z P Ampyq XD1

y,m,kpRq or z P Akpyq X
D1
y,m,kpRq. We consider the smallest ordinal β ă ω1 such that F pβq lists a

quadruple of the form px, y,m, kq for which W rGω1s |ù x P Ampyq XD1
y,m,k
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and let R “ Rαβ . As Ampyq and Akpyq are disjoint we know that at stage
β we were in case B. As x is coded into ~S1 after stage β and by the last
Lemma, Case B(i) is impossible at β. Hence, without loss of generality
we may assume that case B(ii) applies at β. As a consequence, there is a
forcing Q2 PW rGβs which is αβ-allowable with respect to Eαβ which forces
Q2 , x P Akpyq. Note that in that case we collect all the reals which witness
p˚˚˚q for some quadruple to form the set Rαβ .

As x P Ampyq X D1
y,m,kpRq, we let β1 ą β be the first stage such that

W rGβ1s |ù x P Ampyq. By Lemma 4.1, W rGβs thinks that Q2 ˆ Pββ1 is
αβ-allowable with respect to Eαβ , yet Q2ˆPββ1 , x P AmpyqXAkpyq. Thus,
at stage β, we must have been in case A. This is a contradiction.

The next lemma will finish the proof of our theorem:

Lemma 9.3. In W rGω1s, if y P ωω is an arbitrary parameter, R a real and
m, k natural numbers, then the sets D0

y,m,kpRq and D1
y,m,kpRq are Σ1

3pRq-
definable.

Proof. The proof is a standard calculation using the obvious modification of
p˚˚˚q employing R as the set which codes the coding areas a real must avoid
to be in D0

y,m,kpRq or D
1
y,m,kpRq.

10 Lifting to Mn

The ideas presented can be used to construct a universe in which Σ1
n`3-

separation can be separated from Π1
n`3-reduction. Its proof is a direct ap-

plication of the ideas from [7] which can be used to translate the argument
for the third level of the projective hierarchy to Mn. As there are no new
ideas needed, and the translation works in a very similar manner to [7], we
will not go into any details.

11 Open questions

We end with several questions which are related to this article.

Question 1. Does there exist a universe in which Σ1
3-separation holds, but

Π1
n-reduction fails for any n ě 3?

Note for this question that in our construction of the failure of Π1
3-

reduction, we used Shoenfield absoluteness, or rather the upwards absolute-
ness of Σ1

3-formulas, several times. Thus a failure of Π1
n-reduction would

need new ideas and arguments.

Question 2. Can one force a universe of Σ1
4-separation in which Π1

4-reduction
fails over just L?
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By a classical result of Novikov, for any projective pointclass Γ, it is
impossible to have Γ and Γ̌-reduction simultaneously. The case for separation
is still unknown.

Question 3. Can one force a universe where Σ1
3- and Π1

3-separation hold
simultaneously?
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